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Chapter 1

Toward Semantically
Meaningful Feature
Spaces for Efficient
Indexing in Large
Image Databases

Anne H.H. Ngu, Texas State University, USA

Jialie Shen, The University of New South Wales, Australia

John Shepherd, The University of New South Wales, Australia

ABSTRACT
The optimized distance-based access methods currently available for multimedia
databases are based on two major assumptions: a suitable distance function is known
a priori, and the dimensionality of image features is low. The standard approach to
building image databases is to represent images via vectors based on low-level visual
features and make retrieval based on these vectors. However, due to the large gap
between the semantic notions and low-level visual content, it is extremely difficult to
define a distance function that accurately captures the similarity of images as perceived
by humans. Furthermore, popular dimension reduction methods suffer from either the
inability to capture the nonlinear correlations among raw data or very expensive
training cost. To address the problems, in this chapter we introduce a new indexing
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technique called Combining Multiple Visual Features (CMVF) that integrates multiple
visual features to get better query effectiveness. Our approach is able to produce low-
dimensional image feature vectors that include not only low-level visual properties but
also high-level semantic properties. The hybrid architecture can produce feature
vectors that capture the salient properties of images yet are small enough to allow the
use of existing high-dimensional indexing methods to provide efficient and effective
retrieval.

INTRODUCTION
With advances in information technology, there is an ever-growing volume of

multimedia information from emerging application domains such as digital libraries,
World Wide Web, and Geographical Information System (GIS) systems available online.
However, effective indexing and navigation of large image databases still remains one
of the main challenges for modern computer system. Currently, intelligent image retrieval
systems are mostly similarity-based. The idea of indexing an image database is to extract
the features (usually in the form of a vector) from each image in the database and then
to transform features into multidimensional points. Thus, searching for “similarity”
between objects can be treated as a search for close points in this feature space and the
distance between multidimensional points is frequently used as a measurement of
similarity between the two corresponding image objects.

To efficiently support this kind of retrieval, various kinds of novel access methods
such as Spatial Access Methods (SAMs) and metric trees have been proposed. Typical
examples of SAMs include the SS-tree (White & Jain, 1996), R+-tree (Sellis, 1987) and grid
files (Faloutsos, 1994); for metric trees, examples include the vp-tree (Chiueh, 1994), mvp-
tree (Bozkaya & Ozsoyoglu, 1997), GNAT (Brin, 1995) and M-tree (Ciaccia, 1997). While
these methods are effective in some specialized image database applications, many open
problems in image indexing still remain.

Firstly, typical image feature vectors are high dimensional (e.g., some image feature
vectors can have up to 100 dimensions). Since the existing access methods have an
exponential time and space complexity as the number of dimensions increases, for
indexing high-dimensional vectors, they are no better than sequential scanning of the
database. This is the well-known “dimensional curse” problem. For instance, methods
based on R-trees can be efficient if the fan-out of the R-tree nodes remain greater than
two and the number of dimensions is under five. The search time with linear quad trees
is proportional to the size of the hyper surface of the query region that grows with the
number of dimensions. With grid files, the search time depends on the directory whose
size also grows with the number of dimensions.

Secondly, there is a large semantic gap existing between low-level media represen-
tation and high-level concepts such as person, building, sky, landscape, and so forth.
In fact, while the extraction of visual content from digital images has a long history, it has
so far proved extremely difficult to determine how to use such features to effectively
represent high-level semantics. This is because similarity in low-level visual feature may
not correspond to high-level semantic similarity. Moreover, human beings perceive and
identify images by integrating different kinds of visual features in a “nonlinear” way. This
implies that assuming each type of visual feature contributes equally to the recognition
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