
1

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-7998-7156-9.ch001

ABSTRACT

In the controlflow paradigm, based on the finite automata theory, one writes a program in order to
control the flow of data through the hardware. In the dataflow paradigm, one writes a program in order
to configure the hardware. Then, the question is what moves data through the hardware, if that is not a
stored program? Ideally, in the dataflow paradigm, data get moved by the voltage difference between the
system input and the system output, with flip-flops and register barriers in-between (FPGAs), or without
these barriers (referred as ultimate dataflow), possibly but not necessarily, with the computing infrastruc-
ture based on the analog hardware. See the references for one specific viewpoint related to the subject.

THE CONTROLFLOW ESSENCE

The controlflow paradigm dates back to the times of von Neumann in 1940s (vonNeumann, 1951), when
the first machines were implemented based on that paradigm, but its rapid popularity came up with the
invention of microprocessors, especially those based on the RISC and MIPS concepts (Hennessy, 1982).
In both cases, as already indicated, the essence is in the theory of finite automata.

The more recent advances include a number of architectural advances (e.g., Grujic, 1996; Milen-
kovic, 2000; Trobec, 2016), technology advances (e.g., Milutinovic1996), extensions of the paradigm
(e.g., Babovic, 2016; Gavrilovska, 2010), extensive research in the domains of system software (e.g.,
Knezevic, 2000), tools for effective code developments (e.g., Trifunovic, 2015), and the ready to use
library routines for a plethora of different applications, with a recent stress on Artificial Intelligence,
Deep Learning, and Data Mining (e.g., Radivojevic, 2003). These advances span the time from 1990s
till today, and are here presented briefly, stressing only the concepts of interest for this edited volume,
which all originated from the laboratory that synergizes the contributing authors of this book.

An Introduction to Controlflow
and Dataflow Supercomputing

Miloš Kotlar
School of Electrical Engineering, University of Belgrade, Serbia

2

An Introduction to Controlflow and Dataflow Supercomputing
﻿

Programs predominantly based on the transactional code are well suited for execution on machines
implemented using a controlflow architecture. However, controlflow architectures are often times not
the best suited for highly parallel code operating on big data, with low power, low volume, and high
precision requirements. For such environments, accelerators are needed.

THE DATAFLOW ESSENCE

The dataflow paradigm dates back to the MIT research of professors Dennis and Arvind in 1970s, when
the first machines were implemented based on that paradigm, but the machines with a really great potential
for speed up and power savings started to appear with the research in and around Maxeler Technolo-
gies, in 1990s. In the early MIT research, the essence is in data that flow using standard finite automata
hardware underneath, while in the Maxeler research (e.g., see an overview at Milutinovic, 2015), as
well as in the early Purdue University research (e.g., Milutinovic, 1987), the essence is in mapping the
algorithms into hardware, so that the dataflow process is fully implemented in hardware.

The more recent advances include a number of extensions of the paradigm (e.g., Jovanovic, 2012),
extensive research in the domains of system software (e.g., see an overview at Milutinovic, 2015), tools
for effective code developments (e.g., Trifunovic, 2015), and the ready to use library routines for large
data volumes (e.g., Flynn, 2013). These advances span the time from 1990s till today, and are here pre-
sented briefly, stressing only the concepts of interest for this edited volume, which all originated from
the laboratory that synergizes the contributing authors of this book.

Programs predominantly based on the highly parallel code are well suited for execution on machines
implemented using a dataflow architecture and serving as accelerators. Such accelerators are especially
well suited for highly parallel code operating on big data, with low power, low volume, and high preci-
sion requirements. For such environments, found in many applications covered in this book, accelerators
are an ideal solution. Another type of environment in which the Dataflow paradigm could help is in
applications based on approximate computing for low latency (e.g., Milutinovic1980).

CONCLUSION

The major conclusion of this introduction to controlflow and dataflow supercomputing is that the best
results are obtained with hybrid computers that synergize the two paradigms. The controlflow part is
best used as the host, while the dataflow part is best used as the accelerator. A number of emerging ap-
plications are best implemented on hybrid computers.

Further advances in controlflow, dataflow, and hybrid computing need the creativity that is closely
coupled with realities in the domains of underlying technologies and emerging applications. One study
of creativity utilized in the related research so for could be found, together with related activities in the
dissemination domain, in (Blagojevic2017, Bankovic2020).

However, the major challenge is to map efficiently the most sophisticated emerging algorithms and
applications onto a properly synergized infrastructure that combines dataflow and controlflow paradigms.

2 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/an-introduction-to-controlflow-and-dataflow-

supercomputing/273391

Related Content

Exploring Inter-Cloud Load Balancing by Utilizing Historical Service Submission Records
Stelios Sotiriadis, Nik Bessisand Nick Antonopoulos (2012). International Journal of Distributed Systems

and Technologies (pp. 72-81).

www.irma-international.org/article/exploring-inter-cloud-load-balancing/67559

The Development of ICT for Envisioning Cloud Computing and Innovation in South Asia
Sheikh Taher Abuand Masatsugu Tsuji (2012). Grid and Cloud Computing: Concepts, Methodologies,

Tools and Applications (pp. 453-465).

www.irma-international.org/chapter/development-ict-envisioning-cloud-computing/64496

Predictive File Replication on the Data Grids
ChenHan Liao, Na Helian, Sining Wuand Mamunur M. Rashid (2010). International Journal of Grid and

High Performance Computing (pp. 69-86).

www.irma-international.org/article/predictive-file-replication-data-grids/38979

Lightweight Editing of Distributed Ubiquitous Environments: The CollaborationBus Aqua Editor
Maximilian Schirmerand Tom Gross (2011). International Journal of Distributed Systems and Technologies

(pp. 57-73).

www.irma-international.org/article/lightweight-editing-distributed-ubiquitous-environments/58634

DEVS-Based Simulation Interoperability
Thomas Wutzlerand Hessam Sarjoughian (2010). Handbook of Research on Discrete Event Simulation

Environments: Technologies and Applications (pp. 75-91).

www.irma-international.org/chapter/devs-based-simulation-interoperability/38258

http://www.igi-global.com/chapter/an-introduction-to-controlflow-and-dataflow-supercomputing/273391
http://www.igi-global.com/chapter/an-introduction-to-controlflow-and-dataflow-supercomputing/273391
http://www.irma-international.org/article/exploring-inter-cloud-load-balancing/67559
http://www.irma-international.org/chapter/development-ict-envisioning-cloud-computing/64496
http://www.irma-international.org/article/predictive-file-replication-data-grids/38979
http://www.irma-international.org/article/lightweight-editing-distributed-ubiquitous-environments/58634
http://www.irma-international.org/chapter/devs-based-simulation-interoperability/38258

