
18

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-7998-7156-9.ch003

ABSTRACT

Large data centers composed of many servers provide the opportunity to improve performance by paral-
lelizing jobs. However, effectively exploiting parallelism is non-trivial. For each arriving job, one must
decide the number of servers on which the job is run. The goal is to determine the optimal allocation of
servers to jobs that minimizes the mean response time across jobs – the average time from when a job
arrives until it completes. Parallelizing a job across multiple servers reduces the response time of that
individual job. However, jobs receive diminishing returns from being allocated additional servers, so
allocating too many servers to a single job leads to low system efficiency. The authors consider the case
where the remaining sizes of jobs are unknown to the system at every moment in time. They prove that,
if all jobs follow the same speedup function, the optimal policy is EQUI, which divides servers equally
among jobs. When jobs follow different speedup functions, EQUI is no longer optimal and they provide
an alternate policy, GREEDY*, which performs within 1% of optimal in simulation.

1. INTRODUCTION

The Parallelization Tradeoff

Modern data centers are composed of a large number of servers, affording programmers the opportu-
nity to run jobs faster by parallelizing across many servers. To exploit this opportunity, jobs are often
designed to run on any number of servers (Delimitrou & Kozyrakis, 2014). Running on additional serv-

Optimal Scheduling of
Parallel Jobs With Unknown

Service Requirements
Benjamin Berg

Carnegie Mellon University, USA

Mor Harchol-Balter
Carnegie Mellon University, USA

19

Optimal Scheduling of Parallel Jobs With Unknown Service Requirements

ers may reduce a job’s response time, the time from when the job arrives to the system until it is com-
pleted. However, effectively exploiting parallelism is non-trivial. Specifically, one must decide how
many servers to allocate to each job in the system at every moment in time. We consider the setting
where jobs arrive over time, and the system must choose each job’s level of parallelization in order to
minimize the mean response time across jobs. In choosing each job’s server allocation, one must con-
sider the following tradeoff. Parallelizing an individual job across multiple servers reduces the response
time of that individual job. In practice, however, each job receives a diminishing marginal benefit from
being allocated additional servers. Hence, allocating too many servers to a single job may decrease
overall system efficiency. While a larger server allocation may decrease an individual job’s response
time, the net effect may be an increase in the overall mean response time across jobs. We therefore aim
to design a system which balances this tradeoff, choosing each job’s server allocation in order to mini-
mize the mean response time across all jobs. It was shown in (Bienia et al., 2008) that many of the
benefits and overheads of parallelization can be encapsulated in a job’s speedup function, s k() , which

specifies a job’s service rate on k servers. If we normalize s 1() to be 1, we see that a job will complete
s(k) times faster on k servers than on a single server. In general, it is conceivable that every job will have
a different speedup function. However, there are also many workloads (Bienia et al., 2008) where all
jobs have the same speedup function, such as when one runs many instances of the same program. It
turns out that even allocating servers to jobs which follow a single speedup function is non-trivial. Hence,
we will first focus on jobs following a single speedup function before turning our attention to multiple
speedup functions. In addition to differing in their speedup functions, different jobs may represent dif-
ferent amounts of computation that must be performed. For example, if a data center is processing search
queries, a simple query might require much less processing than a complex query. We refer to the amount
of inherent work associated with a job as the job’s size. It is common in data centers that job sizes are
unknown to the system { users are not required to tell the system anything about the internals of their
jobs when they submit them. Hence, we consider the case where the system does not know, at any mo-
ment in time, the remaining sizes of the jobs currently in the system.

The question of how to best allocate servers to jobs is commonly referred to as the choice between
fine grained parallelism, where every job is parallelized across a large number of servers, and coarse
grained parallelism, where the server allocation of each job is kept small. This same tradeoff arises in
many parallel systems beyond data centers. For example, (Berg et al., 2017) considers the case of jobs
running on a multicore chip. In this case, running on additional cores allows an individual job to com-
plete more quickly, but leads to an inefficient use of resources which could increase the response times
of subsequent jobs. Additionally, an operating system might need to choose how to partition memory
(cache space) between multiple applications. Likewise, a computer architect may have to choose be-
tween fewer, wider bus lanes for memory access, or several narrower bus lanes. In all cases, one must
balance the effect on an individual job’s response time with the effect on overall mean response time.
Throughout this chapter, we will use the terminology of parallelizing jobs across servers, however all
of our remarks can be applied equally to any setting where limited resources must be shared amongst
concurrently running processes.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/optimal-scheduling-of-parallel-jobs-with-

unknown-service-requirements/273393

Related Content

The Socio-Technical Virtual Organisation
Rob Smithand Rob Wilson (2012). Grid and Cloud Computing: Concepts, Methodologies, Tools and

Applications (pp. 1010-1032).

www.irma-international.org/chapter/socio-technical-virtual-organisation/64527

Consistency of Replicated Datasets in Grid Computing
Gianni Pucciani, Flavia Donno, Andrea Domeniciand Heinz Stockinger (2009). Handbook of Research on

Grid Technologies and Utility Computing: Concepts for Managing Large-Scale Applications (pp. 49-58).

www.irma-international.org/chapter/consistency-replicated-datasets-grid-computing/20508

Publish/Subscribe and JXTA based Cloud Service Management with QoS
He Qian, Wang Yong, Li Jiaand Cai Mengfei (2016). International Journal of Grid and High Performance

Computing (pp. 24-37).

www.irma-international.org/article/publishsubscribe-and-jxta-based-cloud-service-management-with-qos/165090

Service Providers Indexing Using P2P Systems
G. Marchetto, M. Papa Manzillo, L. Torrero, L. Ciminieraand F. Risso (2010). Handbook of Research on

P2P and Grid Systems for Service-Oriented Computing: Models, Methodologies and Applications (pp. 852-

889).

www.irma-international.org/chapter/service-providers-indexing-using-p2p/40831

Achieving QoS in Highly Unreliable Grid Environments
Antonios Litke (2009). Quantitative Quality of Service for Grid Computing: Applications for Heterogeneity,

Large-Scale Distribution, and Dynamic Environments (pp. 156-180).

www.irma-international.org/chapter/achieving-qos-highly-unreliable-grid/28276

http://www.igi-global.com/chapter/optimal-scheduling-of-parallel-jobs-with-unknown-service-requirements/273393
http://www.igi-global.com/chapter/optimal-scheduling-of-parallel-jobs-with-unknown-service-requirements/273393
http://www.irma-international.org/chapter/socio-technical-virtual-organisation/64527
http://www.irma-international.org/chapter/consistency-replicated-datasets-grid-computing/20508
http://www.irma-international.org/article/publishsubscribe-and-jxta-based-cloud-service-management-with-qos/165090
http://www.irma-international.org/chapter/service-providers-indexing-using-p2p/40831
http://www.irma-international.org/chapter/achieving-qos-highly-unreliable-grid/28276

