
A RUP-Based Software Process Supporting Progressive Implementation 375

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIX

A RUP-Based Software
Process Supporting

Progressive Implementation
Tiago Lima Massoni

Universidade Federal de Pernambuco (UFPE), Brazil

Augusto Cesar Alves Sampaio
Universidade Federal de Pernambuco (UFPE), Brazil

Paulo Henrique Monteiro Borba
Universidade Federal de Pernambuco (UFPE), Brazil

ABSTRACT
This chapter introduces an extension of the Rational Unified Process (RUP) with a
method that supports the progressive, and separate, implementation of three different
aspects: persistence, distribution, and concurrence control. This complements RUP
with a specific implementation method, called Progressive Implementation Method
(Pim), and helps to tame the complexity of applications that are persistent, distributed,
and concurrent. By gradually and separately implementing, testing, and validating
such applications, we obtain two major benefits: the impact caused by the requirements
changes during development is reduced and testing and debugging are simplified. In
addition, the authors hope to contribute to solving the lack of a specific implementation
method in RUP.

INTRODUCTION
Software development has become a more complex activity over the last years.

Clients have been increasingly demanding higher productivity, better software quality,
and shorter time to market. Additional strain results from new, common requirements

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.irm-press.com

�������

IRM PRESS

This chapter appears in the book, UML and the Unified Process by Liliana Favre. Copyright © 2003, IRM
Press, an imprint of Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

376 Massoni, Sampaio & Borba

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

such as distribution and concurrent access. These non-functional issues complicate
implementation, testing, and particularly, maintenance activities. Most human and
financial resources are driven to maintenance activities (Pressman, 1997).

Industrial software processes, such as the Rational Unified Process (RUP), can be
useful in dealing with this complexity. A software process defines a set of software
construction, validation, and maintenance activities in order to discipline the overall
software development practices in an organization. This is particularly true for RUP,
which has been widely adopted by major software organizations (Ambler, 1999). It is a
highly comprehensive and detailed process, yet focuses on requirements, analysis, and
design activities.

Regarding the coding process, implementation methods are important to address
the complexity of design decisions during coding activities, especially for non-func-
tional concerns. In order to simplify those activities, we argue that it is useful to tackle
functional and non-functional concerns separately. In fact, whereas architectural and
design activities should jointly consider functional and non-functional concerns (Waldo
et al., 1997), implementation activities can benefit from the separation of the two
concerns.

In this context, an implementation method might help programmers to effectively
achieve this separation. Therefore, we have defined the Progressive Implementation
Method (Pim) (Borba et al., 1999), supporting a progressive approach for object-oriented
implementation in Java (Gosgling et al.,1996) where persistence, distribution, and
concurrence control aspects are not initially considered in the coding activities, but are
gradually introduced. In this way, we can significantly reduce the impact caused by
requirements changes during development and tame the complexity by gradually imple-
menting and testing different aspects of code.

This progressive approach is possible because this method relies on the use of
design patterns that provide a certain degree of modularity and separation of concerns
(Parnas et al., 1972) in such a way that the different aspects can be implemented
separately. However, other techniques and tools for separation of concerns might just
as well be used, such as aspect-oriented programming (Kiczales et al., 1997).

The objectives of this chapter are:
• Present the basic concepts of the Progressive Implementation Method (Pim),

defining a clear basis for our main goal, i.e., the RUP extension.
• Define the software process resulting from the inclusion of the method into RUP,

providing proper implementation guidelines for RUP. Thus, we hope to support the
progressive implementation of different aspects in software development projects
where disciplined requirements, design, and test activities are essential (demand-
ing a software process).

In the next sections, we present the main concepts of RUP and Pim, which are useful
for a better understanding of our solution. We also outline the definition of RUPim, i.e.,
the proposed extension of RUP, and present some results obtained in simple practical
experiments using RUPim. Finally, we present some conclusions, future trends, and
related work.

11 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/rup-based-software-process-

supporting/30552

Related Content

XML-Based Analysis of UML Models for Critical Systems Development
Jan Jurjensand Pasha Shabalin (2005). Advances in UML and XML-Based Software

Evolution (pp. 257-274).

www.irma-international.org/chapter/xml-based-analysis-uml-models/4938

XML Native Storage and Query Processing
Ning Zhangand Tamer M. Özsu (2010). Advanced Applications and Structures in

XML Processing: Label Streams, Semantics Utilization and Data Query Technologies

(pp. 1-17).

www.irma-international.org/chapter/xml-native-storage-query-processing/41497

New Model for Geospatial Coverages in JSON: Coverage Implementation

Schema and Its Implementation With JavaScript
Joan Maso, Alaitz Zabala Torresand Peter Baumann (2019). Emerging Technologies

and Applications in Data Processing and Management (pp. 316-357).

www.irma-international.org/chapter/new-model-for-geospatial-coverages-in-json/230695

Negotiating Early Reuse of Components - A Model-Based Analysis
J. A. Sykes (2003). UML and the Unified Process (pp. 66-79).

www.irma-international.org/chapter/negotiating-early-reuse-components-model/30538

Using a Graph Transformation System to Improve the Quality of

Characteristics of UML-RT Specifications
Lars Gunske (2005). Advances in UML and XML-Based Software Evolution (pp. 20-

46).

www.irma-international.org/chapter/using-graph-transformation-system-improve/4929

http://www.igi-global.com/chapter/rup-based-software-process-supporting/30552
http://www.igi-global.com/chapter/rup-based-software-process-supporting/30552
http://www.igi-global.com/chapter/rup-based-software-process-supporting/30552
http://www.irma-international.org/chapter/xml-based-analysis-uml-models/4938
http://www.irma-international.org/chapter/xml-native-storage-query-processing/41497
http://www.irma-international.org/chapter/new-model-for-geospatial-coverages-in-json/230695
http://www.irma-international.org/chapter/negotiating-early-reuse-components-model/30538
http://www.irma-international.org/chapter/using-graph-transformation-system-improve/4929

