IDEA GROUP PUBLISHING

= IGP=F

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4486

Old Dogs and New Tricks: Retraining Legacy
Programmers in Object Oriented Technology

H. James Nelson
David Eccles School of Business, The University of Utah, Salt Lake City, UT 84112
(801) 587-9165, actjn@business.utah.edu

Deb Armstrong
School of Business, The University of Kansas, Lawrence, KS 66045, darmstrong@ukans.edu

ABSTRACT

Faced with a chronic shortage of skilled object-oriented programmers, and burdened with an oversupply of procedural
programmers leaving Y2K projects, organizations must find ways of retraining existing programmers in the new tricks of
object technology. However, traditional methods of training do not address the difficulties of making the mind shift from one
paradigm to another. This paper describes an effort to develop a course that shifts experienced procedural programmers into
“object thinking,” thus making subsequent traditional OO training more efficient and effective. We describe a long-term
exploratory field study that follows students over two years and compare their OO thinking to that of expert OO program-
mers and to programmers who underwent traditional OO training. This research is supported by a grant from The Boeing

Company.
INTRODUCTION

Over the past few years we have seen considerable effort
being put forth to correct a design problem in legacy computer
systems: the Year 2000 Problem. As this work declines (whether it
is complete or it is too late) projects that have been on hold are
reawakening. Organizational information systems (IS) departments
are turning from legacy system “fire fighting” to new systems de-
velopment. Once again, organizations are searching for the Silver
Bullet of software technology that will allow the rapid develop-
ment of highly flexible, easily maintainable, user friendly soft-
ware.

In their search, organizations have discovered a suddenly
much more mature Object Oriented (OO) programming environ-
ment. What was once a bewildering array of competing modeling
techniques, development approaches, and diagramming methods,
is now a largely unified set of standards for OO software analysis,
design, and implementation. This result is primarily due to the
work of the Object Management Group’s Object Analysis and
Design Taskforce and the development of the Unified Modeling
Language (UML) (Martin & Odell, 1998).

However, organizations have also discovered that there is a
severe shortage of skilled information systems professionals. Es-
pecially scarce are those IS professionals who are well trained in
OO techniques. So on the one hand, organizations have a pool of
programmers who are experts in the organization’s domain
(whether it is banking, insurance, or aircraft manufacturing) but
unfortunately are experts in legacy software development and pro-
cedural programming languages. On the other hand organizations
cannot get the skilled IS professionals they need (at any price) for
OO development. Even when found, these new hires may take
years to become integrated into an organization’s interpersonal
network and become very “useful” to the organization (Lee & Allen,
1982). The solution, it seems, is to retrain the pool of expert pro-
cedural programmers in the Object Oriented techniques.

Unfortunately, retraining experienced procedural program-
mers has proved to be difficult in practice (Wasserman, 1991).
There are some significant differences between procedure-oriented
and OO techniques. The OO model requires a fundamental shift

in the way programmers think about and approach problems. Mak-
ing this shift is far more difficult than learning another procedural
programming language, despite what some OO language propo-
nents would have you believe. The procedure-oriented program-
mer must begin thinking in terms of objects that are things and
have certain behaviors rather than blocks of code that do things.
This shift in thinking is not easy to achieve.

Research based on learning theories indicates that an expert
programmer’s prior knowledge of procedural programming tech-
niques actively hinders his or her learning object technology, mak-
ing their learning more difficult compared to those who have had
no prior programming experience at all (Nelson, Irwin, &
Monarchi, 1997). Similar learning difficulties and have been well
documented in other domains such as learning a new natural lan-
guage or a new motor skill (Crowder, 1976). Typically, the experi-
enced procedural programmer is thrown in to the OO world with
little more than a class or two of OO theory and the differences
between C and C++, and is expected to be immediately produc-
tive. The shortened software development cycle so prevalent to-
day does not allow the programmer to make the shift to OO think-
ing. Stuck “between worlds” and pressured to produce something,
the programmer falls back on well-known procedural techniques.
He or she produces code that is representative of neither proce-
dural or OO thinking. This hybrid code is notoriously difficult to
maintain; much worse than strictly procedural or strictly OO code.
This problem is nicely summarized in the following two quotes
from different corners of IBM:

“IBM’s new object-oriented COBOL products allow

the world’s three million COBOL programmers to

create objects in a language they already know. With

little or no retraining, developers can migrate to an

object-oriented environment and immediately

receive the associated benefits.”

Tim Negris, vice president, marketing, IBM

Software Solutions.

“Basically, if your manager hears about object-oriented

programming and decides that this is the way the world

This paper appears in Challenges of Information Technology Management in the 21st Century, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

218 + IT Management in the 21st Century

is going, what he’ll do is he’ll give you Stroustrup

and a compiler and say, “Here, be wonderful.” And

you, the hapless programmer, realize you can’t be won-

derful, but you have to be productive. You have to

show something, so what you do is slip back into the

way you were programming before.”

John Vlissides, IBM T.J. Watson Research Center

The key to this problem is to circumvent the active interfer-
ence of an experienced programmer’s procedural knowledge. If
one could do this, if one could shift a programmer from being an
expert learning a new paradigm to being a novice learning that
paradigm for the first time, training could be more effective, the
learning curve could be shortened, and the programmer could pro-
duce good software sooner. In addition, the experienced
programmer’s domain knowledge is ready to be used, and does
not have to be built up as would be the case with new hires.

This paper describes an exploratory field experiment in en-
hancing OO learning. We developed a short course (two half-days)
that is designed to shift expert procedural programmers into “OO
thinking.” Three classes of students were followed for up to two
years to determine if this class had any effect on their subsequent
performance in other OO classes and on OO projects. In the next
section, we describe the theory behind our “Object Oriented Tech-
nology Training Improvement” (OOTTI) project. We then describe
the course structure itself, and then the results we have obtained to
date. We conclude with a discussion of how courses such as OOTTI
can improve learning in domains other than object oriented pro-
gramming.

COGNITIVE INTERFERENCE AND LEARNING

In the traditional learning model, the student is taught the
concrete aspects of a language and gradually gains the more ab-
stract “expert thinking” of the programming paradigm. The stu-
dent is typically an expert practitioner of procedural programming
and is deep in doing, generally automatically, procedural program-
ming. The programming is performed naturally and without much
thought about the rules of the language. He or she is in the “con-
crete” of procedural programming. When training in OO begins,
the student is taught definitions, concepts, and language constructs
and is then presented with a series of problems where these ele-
ments can be used. The training moves the student from concrete

Figure 1. OO Training, state of the art.

Figure 2. The “expected” learning curve.

Hnowisdpe

I ard's i pa =

procedural programming to concrete object oriented programming.
Once outside the classroom, the student puts these concrete con-
cepts into practice and gradually becomes skilled in their applica-
tion. Over time, the programmer gains the abstract, “expert think-
ing” necessary to use OO techniques more or less automatically
(see Figure 1).

The traditional training model works well if the student has
no prior programming experience or is simply learning a new lan-
guage in a familiar paradigm. The product that is produced may
not be as efficient or as “clean” as that produced by an expert in
the paradigm, but the product that is produced will generally fol-
low the rules of the particular programming paradigm. Figure 2
shows a “normal” learning curve.

However, the traditional training model breaks down when
the student is expert in one or more languages in one paradigm
(such as procedural programming), and attempts to learn a lan-
guage from another paradigm (such as object oriented program-
ming). The new paradigm requires the student to learn an entirely
different way of thinking about a problem before using the new
language. For example, in the procedural paradigm the program-
mer approaches the problem by identifying functions, the steps
that must be followed to produce the result: the “how.” In contrast,
in the object oriented paradigm, the programmer approaches the

problem by first identifying the things that take part
in the process: the “what.”

An expert structured programmer will learn the
theory behind the language and most of the new lan-

l_,-f lh:slr-i::x". guage constructs fairly easily. However, on the job
| bt Ovignged | the student will discover new problems unlike those
. Thinking _____-' “in the book.” Under deadline pressures, the student
R will fall back upon the more familiar procedural pro-
gramming knowledge rather than try to figure out the
unfamiliar OO programming knowledge. Consciously
or unconsciously, cognitive interference takes hold and
the result is a software product that is neither proce-
dural nor OO, and much harder to maintain than ei-
ther. Figure 3 shows the changes to the learning curve
Fcrm:; - ':'"E'::'“ e brougl;; about by cognitive interference.
Prograniieg Frlngirrming ‘ ‘the expert pro.cedural programmer were to
[Ese s oo S icioas] “think like an expert” in the OO paradigm, then the
[, procedural programming knowledge would not sur-
e, face in response to a problem. The student would re-
_Th“':" _F“'u_r:d Menzring B main in the OO paradigm, cognitive interference
Tramng raring - ?

L

-

Figure 3. Learning curve for expert procedural programmers.

Copratve Infa bwrcs

nrowTgn

Rax (rarbel

Tem e Egpwsr

would be avoided and the expert would learn at worst as a novice
would. The problem, then, is to get the student thinking as an ex-
pert before learning any of the theory or constructs of the lan-
guage.

QUANTUM SHIFT LEARNING

In order to create this expert OO thinking in an expert pro-
cedural programmer, we used techniques described by Senge
(Senge, 1990; Senge, Kleiner, Roberts, Ross, & Smith, 1994).
Briefly, this involves surfacing and challenging the student’s pro-
cedural programming mental models while building a team learn-
ing environment, building a shared vision of the new OO program-
ming paradigm, and then engaging in systems thinking to solidify
the abstract OO concepts with concrete examples. We designed a
short, two half-day, introduction to object oriented thinking course
that would serve as a first course to any other object oriented train-
ing. The steps, and how they were integrated into the course, are
described more fully below. Figure 4 is an outline of the course.

Surfacing and Challenging Existing Mental Models

The students in the course are all experts in procedural pro-
gramming. They perform their programming tasks naturally and
easily, with about as much thought as one would use
when riding a bicycle. The problem is to move them
to performing object oriented programming just as
easily and without falling back on their natural pro-
cedural knowledge.

The first half-day session is dedicated to mak-
ing the students aware of what they are doing as they
perform procedural programming. The students must
be made aware of the mental models they use. This
first session is tedious, frustrating, repetitive, and very
necessary. The process involves asking the students
questions, and through these questions leading them
to understand what they had been performing natu-
rally. The questioning process looks something like
the following. The answers to a question drives the
next set of questions.

» Tell me about your experience in procedural (struc-
tural) programming.

* What do you call the piece you work on? What is
the smallest piece that a person would typically
be working on?

* Is there a process you follow?

2000 IRMA International Conference * 219

* Once you get to that level, what do you do?

* What do you do when you have more complex system to build?

* What’s the first thing you think about?

* What do you do when dealing with very small pieces of code?

* How do you code and come up with a black box?

* Following any specific order? Top to bottom?

* How do you know how to do it from requirements?

* What is it that you do to get what the user wants?

* Suppose you’re done with the requirements document, what
do you do to turn it into code?

* Is there a method to decide functionality?

* What’s the next level of decomposition?

The student is driven to explain, in tedious detail, how they
perform what is for them an automatic process. They travel from
the concrete programming to understanding procedural program-
ming in the abstract.

At the end of the first session, the students also begin to
understand some of the problems of the procedural programming
paradigm. Procedures, the business processes, are the parts of the
organization that change most rapidly. The students discuss the
amount of software maintenance they have to do and how virtu-
ally all of it is caused by changes in requirements, driven by changes
to the business processes. Cognitive dissonance sets in as they
wonder why one would base a programming paradigm on the part
of the organization that are the most unstable. The first session
ends with a suggestion that the students figure out a method to
make software more stable.

Building a Shared Vision

The students return the next day full of ideas. With very
little guidance, they realize for themselves that basing a program-
ming paradigm on things that do not change (objects) makes soft-
ware much more stable and flexible than basing a paradigm on
things that tend to change rapidly (the processes). With this real-
ization, they take ownership of the solution; they came up with it
themselves, and this is much more powerful than if they had read
it in a book or heard it in a lecture.
* What changes in a system?
» What sort of business rules?
* How? What’s different?
* What initiated the change?

Figure 4. Structure of the OO Thinking course.

. . -__,-- =,
r Ahatta:ﬁ-. 27 Amstrmet
Procedural + . | Otjecd Oviended |
Thinkimg Hneak " Thimking .
AEEeny i
Ses=ion | Seasgion 2
Comorete Concreis
Procedural Cioject Orended
Programiring Programening

220 -« IT Management in the 21st Century

* What causes change?

« Isiteasy to generalize code?

* How can you write software so that things don’t change as
much?

* How do we create a system so it responds well to change?

* What is data?.

* What are the characteristics of data?

* What should be based on data?

Then, the students are encouraged to work on a program-
ming problem using these new insights. Guided by the instructor,
they invent for themselves how to approach a problem, how to
decompose it, and how to construct a solution that is stable, is
flexible, and is easy to maintain. They develop abstract, expert
OO thinking.

Systems Thinking

Finally, and only after the students have created OO think-
ing for themselves, are they introduced to definitions, methods,
and language constructs. They learn the “real” names for the con-
cepts that they invented. They learn about classes and instances,
methods and message passing, inheritance and polymorphism.
Time permitting, the students finish with a walkthrough of a simple
OO program showing how these concepts are put into practice.
They travel from abstract OO thinking into concrete OO practice.

AN EXPLORATORY FIELD EXPERIMENT

We tested our theory of learning with a field experiment at a
major manufacturing organization. Twenty-eight expert procedural
programmers took part in the study, split across three separate
classes.. All were expert FORTRAN programmers with an aver-
age of twelve years of experience. All had limited (if any) expo-
sure to OO technology. The course evolved over time: the first
two classes were delivered over three three-hour morning sessions.
The final class was delivered over two four-hour morning ses-
sions. The classes were structured as we described in the previous
section. These twenty-eight procedural programmers formed our
treatment group.

We wished to determine if the students had indeed gained
“expert OO thinking.” To do this, we needed a baseline for expert
thinking. We conducted semi-structured interviews of five expert
OO developers from the same organization. These experts were
not self-selected, but rather were identified as the mentors or “OO
gurus” that everyone would go to for OO help. These experts were
asked a set of questions to help develop a model of expert OO
thinking. The interviews were taped, transcribed, and identified
by a code number to preserve the confidentiality of the interview.

We also interviewed a “control group” of programmers from
the same organization. These programmers were experts in proce-
dural programming, and who had taken the traditional training route
to OO programming. They had from one to two years of OO pro-
gramming experience on live projects and had taken an average of
three OO classes, generally classes in development methods and
in C++ and/or Java. These programmers were asked the same ques-
tions as the experts.

RESULTS

The students were interviewed at intervals after the class to
determine if the class had any affect on their subsequent OO learn-
ing or their performance on OO programming projects. The stu-
dents were interviewed one month, one year, and two years after
the class.

After one month, the students generally forgot the defini-
tions (as expected). For example, they had difficulty defining

29

“class,” “instance,” “polymorphism,” and so on. A key question
in this immediate follow-up interview was “How do you map OO
concepts to procedural programming concepts?”” All but one stu-
dent stated that there is no mapping from OO to procedural pro-
gramming. This is an encouraging result as it is the same reply as
that given by the expert OO programmers:

“I don’t think you can come up with a comparison

that says that this concept maps with another concept.

It’s a really different way of doing things.”
However, the “control group” had other opinions:

“Methods map to procedures. Data flows map to mes-

sages. [do think of methods very much like a subrou-

tine.”
It appeared from these initial interviews that the students had de-
veloped at least preliminary expert thinking, although they had
not been able to put it into practice.

“I think that I would know when I’'m drifting astray.

I’d have an idea that, no this isn’t quite right, and I"d

go back to the text or some reference and satisfy my

unease and redirect myself. I’d have an idea that I was

drifting into “Structured Land.” Enough to stop my-

self before I went the full route.”

2 <

One-year Followup

The first long-term interview was conducted one year after
the class in the last quarter of 1998. There was considerable diffi-
culty in locating the students. Several had left the company, and
many more were not available for a variety of reasons for the one-
year followup. A total of eight students were finally interviewed.
Six of the students were participants in Class 1 and two of the
students were from Class 2. The length of the interviews ranged
from 35 to 75 minutes.

The main finding from these interviews was their observa-
tions of the problems that experienced procedural programmers
have when learning OO technology: the change in thinking. Seven
of the eight individuals mentioned this as the number one problem
in making the transition.

“The concept of getting away from the procedural and

more into the object, you know, encapsulated object

type programming rather than thinking in the serial

type step by step through this whole thing.”

“It seems like with OO you look at it more as they’re

more autonomous for objects, whereas with procedural

I don’t think of it that way at all. I try to think of them

as sort of being independent. That they are self-con-

tained. They know what to do what they do, and

they’ve got their own little world and they take care of

it. Whereas I don’t think of it like that when I’m doing

procedural.”

“Changing their mindset. You have to think differently

to work with object oriented.”

One informant thought the object oriented concepts were not that
different from the structured concepts stating,

“I thought the whole idea of trying to teach somebody

who knew structured programming to go to object ori-

ented programming was not that big a deal. To me, |

guess it’s somewhat fundamental. So why should it be

a big deal?”

However, this student also had a great deal of difficulty with the
structure of the class itself. She strongly disliked the “guided ques-
tions” method of teaching, preferring more answers rather than
more questions.

Two-year Followup

Interviews with the students were requested again in the last
quarter of 1999. The same problems occurred in trying to locate
the students for the followup interviews. Many more students had
left the company, and more students were unavailable. A total of
four students were interviewed. One student was a participant in
Class 1, two were from Class 2, and one was from Class 3. The
length of the interviews ranged from 20 to 45 minutes. The results
paralleled the one-year interviews.

“Well, some say you’re still trying to accomplish the

same thing, but you basically just take a different ap-

proach to get there. I guess I don’t know that the ob-

ject concepts map that well back to the structured con-

cepts. The way you have to think about the problem

and break them up is very different.”

“It’s just the way you think about a problem has to

totally change. One of the main differences with the

OO concepts is that the data stays along with the ob-

jects and also the code. Where you don’t have that in

structured. So you have to do more thinking ahead of

time than when you’re doing structured programming.

As far as what you want your objects to be and stuff

like that.”

Comparison with the Experts

Five expert object oriented programmers with the same or-
ganization were interviewed in the last quarter of 1998 and the
first quarter of 1999. The length of the interviews ranged from 45
to 90 minutes. The experts had an average of 12 years of OO expe-
rience.

The results of these interviews were very similar to the stu-
dent interviews. The experts also thought that the main problem
that experienced structured programmers have when learning OO
is the change in thinking.

“Well, it’s a significant shift in mindset and the prob-

lem is you have to unlearn things that are structured

top down composition, functional programming taught

you.”

“The biggest problem is changing from the functional

decomposition to the object decomposition. Chang-

ing from their mode of thinking of writing down a

sequence of things that happen to other things, to data

that’s somewhere else. The behavior/data separation

that you have in a procedural language to the notion

of a ‘thing’ that contains both data and program.”

2000 IRMA International Conference « 221

DISCUSSION AND CONCLUSION

Generalizations from such a small sample are, of course,
risky. Any long-term studies of experienced programmers in a
volatile job market such as exists today is difficult. However, the
results we obtained are encouraging enough so that we will con-
tinue following as many students as possible through their OO
careers, and we will continue to refine and enhance the Object
Oriented Technology Training Improvement class.

The results of our interviews with the students we could lo-
cate indicates that immediately after the class, and over an ex-
tended period of time, they had the same view of object oriented
programming as OO experts. They viewed OO as a completely
different way of thinking about problems, and when stuck in a
difficult task, they did not fall back on their old procedural pro-
gramming experience. In contrast, the programmers who did not
take our class continued to have a strong mapping from object
oriented concepts to structured concepts. In confidential interviews,
they revealed that their code was not “pure” OO. They did employ
procedural techniques, even when they knew it was “wrong,” in
order to meet deadline pressures. These habits persisted even after
two years of experience on OO programming projects.

The training technique we used to shift expert procedural
programmers to expert OO thinking should work in any environ-
ment where similar paradigm shifts are necessary. For example, in
transitioning thinking from the “chaos” to “process thinking” of
the SEI/CMM capability maturity levels, shifting from monolithic
to distributed computing, and so on.

This exploratory study is just the beginning in a series of
experiments that explore the nature of paradigm shifts in organi-
zations.

REFERENCES

Crowder, R. G. (1976). Principles of Learning and Memory.
Hillsdale: Erlbaum.

Lee, D. M., & Allen, T. J. (1982). Integrating New Staff: Implica-
tions for Acquiring New Technology. Management Science,
28(12), 1405-1420.

Martin, J., & Odell, J. J. (1998). Object Oriented Methods: A Foun-
dation. Upper Saddle River: Prentice-Hall.

Nelson, H. J., Irwin, G., & Monarchi, D. E. (1997). Journeys Up
the Mountain: Different Paths to Learning Object Oriented
Technology. Accounting, Management, and Information Tech-
nologies, 7(1).

Senge, P. M. (1990). The Fifth Discipline: The Art and Practice of
the Learning Organization. New York: Doubleday.

Senge, P. M., Kleiner, A., Roberts, C., Ross, R. B., & Smith, B. J.
(1994). The Fifih Discipline Fieldbook. New York: Doubleday.

Wasserman, A. 1. (1991). Object Oriented Thinking. Object Maga-
zine, 1(3), 10-13.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/old-dogs-new-tricks/31532

Related Content

Trusted and Trustworthy Information Technology

Piotr Coftaand Hazel Lacohée (2015). Encyclopedia of Information Science and Technology, Third Edition
(pp. 4436-4444).

www.irma-international.org/chapter/trusted-and-trustworthy-information-technology/112885

Understanding Cloud Computing in a Higher Education Context

Lucy Selfand Petros Chamakiotis (2018). Encyclopedia of Information Science and Technology, Fourth
Edition (pp. 1153-1163).
www.irma-international.org/chapter/understanding-cloud-computing-in-a-higher-education-context/183827

Social Media and Business Practices
Ashish Kumar Rathoreand P. Vigneswara llavarasan (2018). Encyclopedia of Information Science and
Technology, Fourth Edition (pp. 7126-7139).

www.irma-international.org/chapter/social-media-and-business-practices/184409

Probability Based Most Informative Gene Selection From Microarray Data

Sunanda Dasand Asit Kumar Das (2018). International Journal of Rough Sets and Data Analysis (pp. 1-
12).
www.irma-international.org/article/probability-based-most-informative-gene-selection-from-microarray-data/190887

NLS: A Reflection Support System for Increased Inter-Regional Security

V. Asproth, K. Ekker, S. C. Holmbergand A. Hakansson (2014). International Journal of Information
Technologies and Systems Approach (pp. 61-82).

www.irma-international.org/article/nls/117868

http://www.igi-global.com/proceeding-paper/old-dogs-new-tricks/31532
http://www.irma-international.org/chapter/trusted-and-trustworthy-information-technology/112885
http://www.irma-international.org/chapter/understanding-cloud-computing-in-a-higher-education-context/183827
http://www.irma-international.org/chapter/social-media-and-business-practices/184409
http://www.irma-international.org/article/probability-based-most-informative-gene-selection-from-microarray-data/190887
http://www.irma-international.org/article/nls/117868

