
2001 IRMA International Conference • 23

1. INTRODUCTION
To cope with the current trend to produce quality software in

tightening schedules software developers see reuse as one possible
answer (e.g., Lim, 1997, McIllroy, 1968). Reuse of components is
one approach to handle reuse (Biggerstaff & Richter, 1987). The
basic idea in component reuse is to use some results of the develop-
ment effort more than once (Basili et al., 1992, Krueger, 1992). To
be successful, reuse has to be systematic: it has to be planned in
advance and it must be acknowledged in every phase of software
development cycle (Lim, 1997). One part of this cycle is program-
ming. Here integrated development environments (IDEs) are espe-
cially important. Early IDEs included such tools as an editor and a
compiler but currently these environments may include, among other
things, source code control, library management, support for
workgroups, and version control (Kölling & Rosenberg, 1996).

Java has emerged as one of the most popular programming
languages and its advantage is that it closely follows emerging
trends in software development. One such trend is the support for
component-based development in the form of JavaBeans standard.
JavaBeans brings component technology to the Java platform. With
JavaBeans you can create reusable, platform-independent compo-
nents (Sun, 2000).

Our research question is: “Do Java IDEs support the cre-
ation and reuse of code components?” As the only components
supported by the chosen IDEs are JavaBeans, we limited our study
to JavaBeans components.

2. SELECTION OF JAVA IDE:S
AND RESEARCH METHOD

We selected three Java IDEs that reflect the current state-of-
the-practice in Java programming. We chose the environments con-
sidering the market share and how well the supplier is known.
Using our criteria we selected:

• Forte for Java Community Edition 1.0 Windows Version by
Sun Microsystems Inc.,

• Borland JBuilder 3.0 Professional by Inprise Corporation, and
• VisualAge for Java Enterprise Edition Version 3.0 by IBM.

We planned to use Visual J++ 6.0 Professional Edition from
Microsoft but we excluded it for its strong orientation towards
ActiveX and Windows.

We wanted to find out how Java IDE supports reuse pro-
cesses involved in component (JavaBean) reuse. To base our evalu-
ation framework on a well known model we chose Lim’s (1997)
reuse model over alternatives (e.g., NATO, 1992, Karlson, 1995,
see Forsell et al., 2000). Lim’s model is not biased toward any

specific implementation technology and it includes code compo-
nents as well as other software development artifacts (assets in
Lim’s vocabulary). Figure 1 shows Lim’s reuse model, its four
major activities, and tasks in them.

Figure 1. The Reuse Process (Lim, 1997)

1. Managing the Reuse Infrastructure

2. Producing Reusable
 Assets 2.1 Analyzing Domain
 2.2 Producing Assets
 2.3 Maintaining and
 Enhancing Assets

3. Brokering Reusable
 Assets 3.1 Assessing Assets for
 Brokering
 3.2 Procuring Assets
 3.3 Certifying Assets
 3.4 Adding Assets
 3.5 Deleting Assets

4. Consuming Reusable
 Assets 4.1 Identifying System
 and Asset Requireme
 4.2 Locating Assets
 4.3 Assessing Assets for
 Consumption
 4.4 Integrating Assets

Because Lim’s model is not focused solely on the code com-
ponent reuse it has activities and tasks which are irrelevant for the
programming phase. We argue that the following tasks are not and
should not be concern for IDE: analyzing domain, component as-
sessing, procuring an asset, certifying an asset, identifying system
requirements, and assessing assets. Also, managing the reuse in-
frastructure as a whole is not a concern for IDE.

3. RESULTS OF THE EVALUATION
The results of the evaluation are presented below. The main

interest is in the differences and interesting features.

3.1 Producing a Component
All IDEs have fairly similar tools and techniques. The main

tools are wizards and dialogues, but only VisualAge offers dialogs
for the creation and addition of methods. Only VisualAge creates
the BeanInfo class for the produced component. With JBuilder
and Forte users have to add the BeanInfo manually, which is easy.
The possibility to create this functionality by using visual tools is
present only in VisualAge.

Forte feels slow, which makes it difficult to use, and its struc-
ture of menus is not consistent or intuitive. JBuilder offers meth-
ods to add comments to the code and its BeanExpress is well
thought out. VisualAge offers fairly sophisticated and usable vi-
sual tools for the creation of components, it is even possible to
create complicated components with minimal programming. In
VisualAge a great deal of functionality can be defined by applying
the visual tools.

VisualAge is clearly the best tool for producing components.
JBuilder has better structure and is more practical than Forte.

This paper appears in the book, Managing Information Technology in a Global Economy, the proceedings of the Inforrmation Resour
es Management Association International Conference. Edited by Mehdi Khosrow-Pour. Copyright 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

IDEA GROUP PUBLISHING
IGP

#ITB4339

Java integrated development environments’
support for reuse-oriented software development

Jenni Ristonmaa, Jarmo Ahonen, and Marko Forsell
IT Research Institute, University of Jyväskylä, P.O. Box 35, 40351 JYVÄSKYLÄ, Finland

Phone +358 14 260 1211, Fax +358 14 260 2544, [jenni.ristonmaa | jarmo.ahonen | marko.forsell]@titu.jyu.fi

ABSTRACT
Component reuse is a promising direction to develop software more efficiently and cost effectively. One part of software
development is the actual programming with an integrated development environment (IDE). We studied three Java IDEs and
how they support reuse-oriented software development. We derived evaluation criteria from a known reuse model. As a
conclusion we suggest that current Java IDEs need to improve their support for the reuse process.

24 • Managing Information Technology in a Global Economy

3.2 Maintaining and Enhancing a Component
Maintenance and enhancement generally means bug removal

and feature enhancement. Maintenance is unnecessarily compli-
cated if IDE allows users to save source code components without
compilation. VisualAge allows users to save and add source-level
components, but it compiles the code before saving the compo-
nent. Forte allows users to save incorrect components. JBuilder
allows only .class- and .JAR-files to be saved as JavaBeans re-
quiring fairly strict conformance from components. Unfortunately
all environments allow users to modify components in incorrect
ways.

The only IDE of these three to support versioning of com-
ponents is VisualAge. This feature is important when considering
the support offered by IDEs for maintenance and enhancement.

3.3 Adding a Component
In Forte and VisualAge it is possible to add source code com-

ponents to the menu structure. In VisualAge those components are
confirmed to be at least syntactically right. JBuilder allows only
.class- and .JAR-files to be added to the menu structure.

All IDEs have specific menu structures into which compo-
nents should be added. Both VisualAge and JBuilder allow users
to add their own components to any position in a JavaBeans menu
structure. Forte stops working if users try to add a component to
any other position than the Beans-sheet. JBuilder and VisualAge
offer a straightforward and logical way for adding components. In
Forte the technique is more complicated and not so easy to use.

3.4 Deleting a Component
The support for removing a component from the menu struc-

ture is present in JBuilder and VisualAge, while Forte has no such
support. If users want to delete components from Forte, they have
to use filesystem tools and remove the files associated with the
components.

The deletion of a component is immediately shown in the
menu structures of VisualAge. JBuilder and Forte remove the com-
ponent from the menu structure only after the IDE has been restarted.

3.5 Identifying a Component
IDEs do not identify the JavaBeans or Enterprise JavaBeans

component requirements correctly. The only requirement identi-
fied by every IDE is that the component class must be public.
JBuilder often correctly identifies all requirements, but it makes
mistakes. VisualAge checks if the component is syntactically right
and if it is generated by using the automatic tools of VisualAge it
fulfills all requirements.

3.6 Locating a Component
The menu structures reserved for components are very simi-

lar and they are easy to use. The menu structures do not support
classification of components, although every IDE has specific menu
sheets or structures for custom components and components shipped
with the IDE. The only IDE which offers additional tools for the
location of components is VisualAge with its Choose Bean tool.

3.7 Integrating a Component
Only VisualAge and Forte have visual tools for the integra-

tion of components. Users can either use those tools or do the inte-
gration through traditional programming, or users may use a com-
bination of programming and tools. In this respect VisualAge is
more sophisticated than Forte.

3.8 The Best Features and Ranking of the Evaluated IDEs

The evaluated IDEs are considered in the perspective of
Lim’s model. The best features of Forte are its visual tools for
component integration and intuitively appealing naming conven-
tions in its menu structures. The best feature of JBuilder is that it
allows only .class and .JAR -files to be added as components, and
its BeanExpress-tool is a good tool. The best features of VisualAge
are the versioning of classes, its visual integration tools, its tool
for component location, and its automatic compilation of source
code before saving.

The IDEs have been ranked according the results and the
answers in table 1. The ranking is shown in table 2 (1 = best, 3 =
worst).

Table 1: Additional Questions for Ranking.

Table 2: The Ranking of the IDEs

4. DISCUSSION
We have evaluated Java IDEs from the point of view of how

they support reuse process. We based our evaluation on Lim’s re-
use model and derived evaluation criteria from it. It seems that
Java IDEs, in general, still need improvement. IBM’s environment
shows promising directions for future in keeping with their efforts
to provide reuse-oriented features. The support for reuse requires
improvement.

Companies can use these results and our approach when they
want to choose a Java IDE for themselves. However, this implies
that companies know their needs for reuse support and find out
which tool fits these needs best. Furthermore, we believe that the
evaluation method is not limited to the evaluation of Java IDEs, it
can be used to evaluate any programming language specific IDE.
Also, Lim’s framework as a whole can be used to evaluate soft-
ware development methods (Forsell et al. 2000), and we believe it
can be used to evaluate software engineering environments, i.e.

2001 IRMA International Conference • 25

repositories, CASE tools, and project management tools.
Main limitation of the study is that it focuses on Java lan-

guage and three Java IDEs. We need more research on how to add
reuse support in any IDE. Furthermore, IDEs and other tools that
support software development should be integrated more closely
together and these should support and integrate components in
different levels of abstraction from the reuse point of view.

5. REFERENCES
Basili, V., Caldiera, G., Cantone, G., A reference architecture for

the component factory. ACM Transactions on Software Engi-
neering and Methodology, Vol. 1, No. 1, January 1992, 53-80.

Biggerstaff, T., Richter, C., Reusability framework, assessment,
and directions. IEEE Software, March 1987, 41-49.

Forsell, M., Halttunen, V., Ahonen, J., Use and identification of
components in component-based software development meth-
ods. Software Reuse: Advances in Software Reusability, Pro-
ceedings of the 6th International Conference , ICSR-6, , 2000,
284-301.

Karlson, E. (Ed.), Software Reuse: A Holistic Approach,
Chichester: John Wiley and Sons, 1995.

Krueger, C., Software reuse, ACM Computing Surveys, Vol. 24,
No. 2, June 1992, 131-182.

Kölling, M., Rosenberg, J., An object-oriented program develop-
ment environment for the first programming course. Proceed-
ings of the twenty-seventh SIGCSE technical symposium on
Computer science education, 1996, Pages 83 - 87

Lim, W., Management of Software Reuse. Addison-Wesley, 1997.
McIlroy, D., Mass produced software components. Report on a

conference by the NATO science committee, Garmish, Ger-
many, October 7-11 1968, in Naur, P., Randel, B., Buxton, J.
(Eds.) Software Engineering: Concepts and Techniques, New
York: Petrocelli/Charter, 1976, 88-98.

NATO, NATO standard for the development of reusable software
components. Volume 1 (of 3 documents), 1992. http://
w w w . a s s e t . c o m / W S R D / a b s t r a c t s / a r c h i v e d /
ABSTRACT_528.html, accessed 1st of June 2000.

Sun, 2000, http://java.sun.com/docs/books/tutorial/javabeans/
index.html, accessed 11th of September 2000.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/java-integrated-development-

environments-support/31574

Related Content

Research on Singular Value Decomposition Recommendation Algorithm Based on Data Filling
Yarong Liu, Feiyang Huang, Xiaolan Xieand Haibin Huang (2023). International Journal of Information

Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-

filling/320222

High-Touch Interactivity around Digital Learning Contents and Virtual Experiences: An Initial

Exploration Built on Real-World Cases
Shalin Hai-Jew (2012). Virtual Work and Human Interaction Research (pp. 127-147).

www.irma-international.org/chapter/high-touch-interactivity-around-digital/65319

Scholarly Identity in an Increasingly Open and Digitally Connected World
Olga Belikovand Royce M. Kimmons (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 6779-6787).

www.irma-international.org/chapter/scholarly-identity-in-an-increasingly-open-and-digitally-connected-world/184373

Integrated Design of Building Environment Based on Image Segmentation and Retrieval

Technology
Zhou Liand Hanan Aljuaid (2024). International Journal of Information Technologies and Systems Approach

(pp. 1-14).

www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-

retrieval-technology/340774

The Understanding of Spatial-Temporal Behaviors
Yu-Jin Zhang (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1344-

1354).

www.irma-international.org/chapter/the-understanding-of-spatial-temporal-behaviors/183847

http://www.igi-global.com/proceeding-paper/java-integrated-development-environments-support/31574
http://www.igi-global.com/proceeding-paper/java-integrated-development-environments-support/31574
http://www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-filling/320222
http://www.irma-international.org/article/research-on-singular-value-decomposition-recommendation-algorithm-based-on-data-filling/320222
http://www.irma-international.org/chapter/high-touch-interactivity-around-digital/65319
http://www.irma-international.org/chapter/scholarly-identity-in-an-increasingly-open-and-digitally-connected-world/184373
http://www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-retrieval-technology/340774
http://www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-retrieval-technology/340774
http://www.irma-international.org/chapter/the-understanding-of-spatial-temporal-behaviors/183847

