
308 • Managing Information Technology in a Global Economy

Achieving Effective Software Reuse for
Business Systems

Daniel Brandon, Jr.
Christian Brothers University, Information Technology Management Department

650 East Parkway South, Memphis, TN 38104, (dbrandon@cbu.edu, phone: 901.321.3615, fax: 901.321.3566)

OVERVIEW
“Reuse [software] engineering is a process where a tech-

nology asset is designed and developed following architectural prin-
ciples, and with the intent of being reused in the future” [Bean,
1999]. “If programming has a Holy Grail, wide-spread code reuse
is it with a bullet. While IT has made and continues to make laud-
able progress in our reuse, we never seem to make great strides in
this area” [Grinzo, 1998]. The quest for that Holy Grail has taken
many developers over many years down unproductive paths”
[Bowen, 1997]

This paper reports on software reuse research (both litera-
ture research and design/coding research) and presents an approach
for effective software reuse in the development of business sys-
tems. This approach is based on Object Oriented technology and
provides for both the specification and enforcement of software
reuse and corporate standards.

BUSINESS SYSTEMS
Business software systems are typically composed of

three logical portions or layers as shown in Figure 1. The “presen-
tation layer” involves the primary user interaction typically via a
graphical user interface (GUI). The “business logic” layer provides
database connectivity, validation, security, transaction control, and
other sequencing or optimization control. This layer may be pack-
aged by a vendor in an application or transaction server or written
by a user. The “database layer” provides for the manipulation of
persistent data, which for most business systems today is stored
in a relational database. The interface to this process is a well
defined standard application programming interface (API) like
ODBC or JDBC using SQL.

NEED FOR REUSE
Today’s software development is characterized by many

disturbing but well documented facts, including:
Most software development projects “fail” (60% [Williamson,
1997])
The supply of qualified IT professionals is much less than the
demand
The complexity of software is constantly increasing
IT needs “better”, “cheaper”, “faster” software development

methods

“Object technology promises a way to deliver cost-effec-
tive, high quality and flexible systems on time to the customer
“[McClure, 1996]. “IS shops that institute component-based soft-
ware development reduce failure, embrace efficiency and augment
the bottom line” [Williamson, 1997]. “The bottom line is this:
while it takes time for reuse to settle into an organization – and for
an organization to settle on reuse – you can add increasing value
throughout the process”. [Barrett, 1999] We say “object technol-
ogy” not just adopting an object oriented language (such as C++ or
Java), since one can still build poor, non object oriented, and non
reusable software even using a fully object oriented language.

TYPES AND APPLICATIONS OF REUSE
Radding defines several different types of reusable compo-

nents [Radding, 1998]:

GUI widgets – effective, but only provide modest payback”
Server-Side components – provide significant payback but re-
quire extensive up-front design and an architectural foundation.
Infrastructure components – generic services for transactions,
messaging, and database … require extensive design and com-
plex programming
High-level patterns - identify components with high reuse po-
tential
Packaged applications – only guaranteed reuse, … may not
offer the exact functionality required

This article and the research behind it are concerned with the
first three types of reuse.

Reusing code has several key implementation areas: appli-
cation evolution, multiple implementations, standards, and new
applications. The reuse of code from prior applications in new
applications has received the most attention. However, just as
important is the reuse of code (and the technology embedded therein)
within the same application.

APPLICATION EVOLUTION
Charles Darwin stated that it was not the biggest, smart-

est, or fastest species that would survive, but the most adaptable.
The same is true for application software. Applications must evolve
even before they are completely developed, since the environment
under which they operate (business, regulatory, social, political,
etc.) changes during the time the software is designed and imple-
mented. This is the traditional “requirements creep”. Then after
the application is successfully deployed, there is a constant need
for change.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

2001 IRMA International Conference • 309

MULTIPLE IMPLEMENTATIONS
Another key need for reusability within the same applica-

tion is for multiple implementations. The most common need for
multiple implementations involves customizations, international-
ization, and multiple platform support. Organizations whose soft-
ware must be utilized globally may have a need to present an
interface to customers in the native language and socially accept-
able look and feel (“localization”). The multiple platform dimen-
sion of reuse today involves an architectural choice in languages
and delivery platforms.

CORPORATE SOFTWARE DEVELOPMENT
STANDARDS

Corporate software development standards concern both
maintaining standards in all parts of an application and maintaining
standards across all applications. “For a computer system to have
lasting value it must exist compatibly with users and other sys-
tems in an ever-changing Information Technology (IT) world. [Bran-
don, 1999] As stated by Weinschenk and Yeo, “Interface design-
ers, project managers, developers, and business units need a com-
mon set of look-and-feel guidelines to design and develop by.”
[Weinschenk, 1995] In the area of user interface standards alone,
Appendix A of Weinschenk’s book presents a list these standards;
there are over three hundred items [Weinschenk, 1997]. Many
companies today still rely on some type of printed “Standards
Manuals.”

ACHIEVING EFFECTIVE SOFTWARE REUSE
In most organizations, software reusability is a goal that is

very elusive, as said by Bahrami “a most difficult promise to
deliver on”. [Bahrami, 1999] Radding stated: “Code reuse seems
to make sense, but many companies find there is so much work
involved, it’s not worth the effort. …In reality, large scale software
reuse is still more the exception than the rule” [Radding, 1998].
Bean in “Reuse 101” states; the current decreased “hype” sur-
rounding code reuse is likely due to three basic problems [Bean,

1999]:
Reuse is an easily misunderstood concept
Identifying what can be reused is a confusing process

Implementing reuse is seldom simple or easy to understand
Grinzo also list several reasons and observations on the prob-

lem of reuse [Grinzo, 1998], other than for some “difficult to
implement but easy to plug-in cases” such as GUI widgets: a
“nightmare of limitations and bizarre incompatibilities”, perfor-
mance problems, “thorny psychological issues” involving pro-
grammers’ personalities, market components that are buggy and
difficult to use, fear of entrapment, component size, absurd licens-
ing restrictions, or lack of source code availability.

Some organizations try to promote software reusability
by simply publishing specifications on class libraries that have
been built for other in house applications or that are available via
third parties, some dictate some type of reuse, and other organiza-
tions give away some type of “bonus” for reusing the class librar-
ies of others. [Bahrami, 1999]

But more often than not, these approaches typically do
not result in much success.

“It’s becoming clear to some who work in this field that large-
scale reuse of code represents a major undertaking” [Radding,
1998]. “ An OO/reuse discipline entails more than creating and
using class libraries. It requires formalizing the practice of re-
use” [McClure, 1996].

Based upon both our literature research herein and experi-

mental implementations, it was concluded that there were two key
components to formalizing an effective software reuse practice
both within an application development and for new applications.
These components were:

1. Defining a specific Information Technology Architecture
within which applications would be developed and reuse would
apply

2. Defining a very specific object oriented “Reuse Founda-
tion” that would be implemented within the chosen IT architecture

IT ARCHITECTURE
“If you want reuse to succeed, you need to invest in the

architecture first“ [Radding, 1998]. “Without an architecture, or-
ganizations will not be able to build or even to buy consistently
reusable components.” In terms of IT architectures for business
systems, there are historically several types as: Central Computer,
File Services, Two or Three Tier Client Server, and Two or Three
Tier Internet (Browser) based. Various transaction processing and
database vendors have their own “slants” on these basic ap-
proaches, which may depend upon how business logic and the
database are distributed.

It was decided to base our implementation research and de-
velopment on the last of these categories as shown in Figure 2.
Only vendor independent and “open” architectures would be used.
The “multiple platform” dimension of reusability would be handled
by using Java and Java generated HTML. Internet based applica-
tions are becoming the preferred way of delivering software based
services within an organization (Intranets), to the worldwide cus-
tomer base via browsers and “net appliances” (Internet), and be-
tween business (Extranets).

The presentation layer is represented by browser windows
using HTML or Java Applets. The HTML is a static container for
the Java Applet or is dynamically generated by a Java Servlet. The
business logic layer is in the form of Java Servlets running on the
information (Internet) server. The database, typically running on a
separate server, is accessed via JDBC from the Servlets (or even
from the Applets if a “type 4” pure JDBC driver was used).

OBJECT ORIENTED REUSE FOUNDATION
As has been concluded by several authors, “A reuse

effort demands a solid conceptual foundation” [Barrett, 1999].
The foundation used here is shown in Figure 3, and is called the
“Object Oriented Reuse Foundation” [OORF]. It is based on the

310 • Managing Information Technology in a Global Economy

REFERENCES
Bahrami, Ali. Object Oriented Systems Development, Irwin

McGraw Hill, 1999
Barrett, Keith and Joseph Schmuller. “Building an Infrastruc-

ture of Real-World Reuse”, Component Strategies, October 1999
Bean, James. “Reuse 101”, Enterprise Development, Octo-

ber 1999
Bowen. Barry. “Software Reuse with Java Technology: Find-

ing the Holy Grail”, www.javasoft.com/features/1997/may/
reuse.html

Brandon, Dan. “An Object Oriented Approach to User In-
terface Standards”, Challenges of Information Technology in the

21st Century, Idea Group Publishing, 2000
Grinzo, Lou. “The Unbearable Lightness of Being Reus-

able”, Dr. Dobbs Journal, September, 1998
Lim, Wayne C., Managing Software Reuse, Prentice Hall,

1998
McClure, Carma. “Experiences from the OO Playing Field”,

Extended Intelligence, 1996
Paulk, Mark, et. al. The Capability Maturity Model, Addison

Wesley, 1995
Radding, Alan. “Hidden Cost of Code Reuse”, Information

Week, November 9, 1998
Reifer, Donald. Practical Software Reuse, Wiley Computer

Publishing, 1997
Weinschenk, Susan and Sarah Yeo. Guidelines for Enterprise

Wide GUI Design, John Wiley & Sons, 1995
Weinschenk, Susan, Pamela Jamar, and Sarah Yeo. GUI De-

sign Essentials, John Wiley & Sons, 1997
Williamson, Miryam. “Software Reuse”, CIO Magazine,

May 1999

key object oriented principles of inheritance and composition. By
establishing this foundation, an organization can effectively begin
to obtain significant reusability since programmers must inherit
their class from one of the established classes and they must only

compose their class of the established pre-built components.
In the design of Figure 3, an application is composed of

a number of Application Windows. Each of these is derived from
the Standard Window (or from another window which was derived
from the Standard Window) and is associated with a table or view
in that database. The Application Window implements the Stan-
dards interface. The Application Window is composed of screen
fields, which use a specific screen item and are bound to a column
of the database table/view. Each screen item implements the Stan-
dards and also implements the GUIWidget interface. The
GUIWidget interface defines the functions that all screen items
provide (such as: requestFocus, setText, getText, isValid, etc.).
The screen items can be from the Java AWT, Java Swing, or third
party class libraries as long as these class library sources have been
extended to use the data in the Standards. The Standards interface
defines all the standards used throughout the system including:
fonts, colors, styles, sizes, initial states, icons, etc.

While Figure 3 shows the conceptual OORF, there would
typically be an inheritance hierarchy of Standard Windows includ-
ing forms, tables, etc. Screen Items would be a hierarchy also for
the different types of these widgets such as textboxes, radio but-
tons, choice buttons, etc. Each application could also create an

inheritance hierarchy of application windows.
Figure 4 shows a generated application window which pro-

vides navigation and update support for a selected database table
including automatic lookup of defined foreign keys to maintain
referential integrity. The reusability for this example was 95%,
that is 95% of the lines of code were already in the OORF. For the
applications implemented thusfar, all obtained reusability of over
90%.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/achieving-effective-software-reuse-

business/31632

Related Content

An Efficient Intra-Server and Inter-Server Load Balancing Algorithm for Internet Distributed

Systems
Sanjaya Kumar Panda, Swati Mishraand Satyabrata Das (2017). International Journal of Rough Sets and

Data Analysis (pp. 1-18).

www.irma-international.org/article/an-efficient-intra-server-and-inter-server-load-balancing-algorithm-for-internet-

distributed-systems/169171

Motivational Factors of Telework
Arlene J. Nicholas (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 740-

753).

www.irma-international.org/chapter/motivational-factors-of-telework/183786

NLS: A Reflection Support System for Increased Inter-Regional Security
V. Asproth, K. Ekker, S. C. Holmbergand A. Håkansson (2014). International Journal of Information

Technologies and Systems Approach (pp. 61-82).

www.irma-international.org/article/nls/117868

Accessibility Solutions for Visually Impaired Persons: A Digital Platform Conceptualization
Rita Oliveira, Alcina Prata, José Carlos Miranda, Jorge Ferraz de Abreuand Ana Margarida Almeida (2021).

Handbook of Research on Multidisciplinary Approaches to Entrepreneurship, Innovation, and ICTs (pp.

331-348).

www.irma-international.org/chapter/accessibility-solutions-for-visually-impaired-persons/260564

Web 2.0 From Evolution to Revolutionary Impact in Library and Information Centers
Zahid Ashraf Wani, Tazeem Zainaband Shabir Hussain (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 5262-5271).

www.irma-international.org/chapter/web-20-from-evolution-to-revolutionary-impact-in-library-and-information-

centers/184230

http://www.igi-global.com/proceeding-paper/achieving-effective-software-reuse-business/31632
http://www.igi-global.com/proceeding-paper/achieving-effective-software-reuse-business/31632
http://www.irma-international.org/article/an-efficient-intra-server-and-inter-server-load-balancing-algorithm-for-internet-distributed-systems/169171
http://www.irma-international.org/article/an-efficient-intra-server-and-inter-server-load-balancing-algorithm-for-internet-distributed-systems/169171
http://www.irma-international.org/chapter/motivational-factors-of-telework/183786
http://www.irma-international.org/article/nls/117868
http://www.irma-international.org/chapter/accessibility-solutions-for-visually-impaired-persons/260564
http://www.irma-international.org/chapter/web-20-from-evolution-to-revolutionary-impact-in-library-and-information-centers/184230
http://www.irma-international.org/chapter/web-20-from-evolution-to-revolutionary-impact-in-library-and-information-centers/184230

