
2001 IRMA International Conference • 341

A Methodology for Conceptual Database
Design from Natural Language Specifications

Aryya Gangopadhyay, Department of Information Systems
University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

Phone: (410)455-2620, Fax: (410)455-1073, gangopad@umbc.edu

ABSTRACT

In this paper we describe a structured method for developing a conceptual data model by starting from a functional model expressed in
a natural language. We have used the Conceptual Dependency theory for mapping natural language descriptions to conceptual
dependency diagrams. We have developed algorithms to convert these conceptual dependency diagrams into unit conceptual depen-
dency tables, which are then merged to represent the whole context of the application. We also show how transactional requirements can
be incorporated into the unit conceptual dependency table, and subsequently convert the unit conceptual dependency table into a
corresponding conceptual model.

1 INTRODUCTION

The process of designing a database for an enterprise can be
divided into conceptual, logical, and physical design phases [14].
The conceptual design phase consists of two steps: view model-
ing, and view integration. In the view-modeling phase, each user
group analyzes its data requirements and expresses them in terms
of a local conceptual schema. In the view integration phase, these
independently developed views are integrated into an overall en-
terprise-wide schema.

There are many methods for determining user requirements:
interviewing users, studying existing environments, and analyzing
functional specifications of the system [26]. In all of these cases,
descriptions in natural languages are common and abundant. Inter-
views are held in natural languages and transcribed in natural lan-
guage reports, existing environments can be described in natural
language descriptions, and functional specifications have natural
language definitions and glossary of terms. Developing the concep-
tual model involves identifying the various data elements from
natural language descriptions, and determining their inter-relation-
ships [11,9,12,13]. No systematic method has been suggested in
the literature to identify missing pieces of information in the de-
scription of user requirements.

In this paper we develop a methodology for designing the
conceptual model starting from a functional model expressed in
natural language sentences, using the design specification from
[17,18,20,22]. We applied the theory of Conceptual Dependen-
cies, developed by Schank [28,27] to interpret natural language
expressions. The theory of conceptual dependencies provides a
method for developing conceptual representations of natural lan-
guage sentences and has primarily been used for developing natural
language understanding and generating systems. The methodology
we describe identifies data elements from the functional model
expressed as natural language description, locate missing pieces of
information, combine the individual data elements into an overall
conceptual schema, and establish object granularity in the data
model.

2 METHODOLOGY
In this section we describe the methodology of developing

the conceptual schema from natural language specification of func-
tional requirements. We first describe the target conceptual schema

to be developed, next we describe the theory of conceptual depen-
dencies, lastly we describe the steps necessary to develop the
conceptual schema from the conceptual dependency diagrams (CD).

2.1 Steps to develop conceptual schema from conceptual
dependency diagrams

Developing the conceptual schema from conceptual depen-
dency diagrams consists of four steps. Each of these steps is
described briefly below.

· Step 1: The first step in our method is to develop con-
ceptual dependency diagrams from natural language specifications.
This step is not shown here for space limitations, but is described
in [3].

· Step 2: The CDs developed from Step 1 are then de-
composed into unit CDs (UCD) where each UCD is made up of
an arc and its associated nodes. Each UCD is represented as a tuple
in a table (referred to as a UCT). Thus, for each primitive activity
there are four UCTs, corresponding to the four arcs associated
with it. The algorithm for developing a UCT from a given CD is
described in 2.1.1.

· Step 3: The next step is integration or merging of the
UCTs. The UCTs corresponding to the arcs of a primitive activity
are merged to form that of the primitive activity. Those corre-
sponding to primitive activities are merged to form the UCTs of
higher level activities. Since the activities in many functional mod-
els are arranged in a hierarchical manner, by successive integration
of the UCTs of the child activities, we obtain those of the parent
activities. This continues until the UCT corresponding to the root
level activity is obtained. An algorithm for integrating UCTs is
presented in Section 2.1.2. The UCT is freed from redundancies by
merging equivalent concepts. Rules for establishing equivalence
among concepts are discussed in Section 2.1.2.

· Step 4: At this point, we convert the UCT to an equiva-
lent ER diagram, which gives us the conceptual model for the entire
application. Note that this conversion can be done at any interme-
diate level as well. Thus, an activity view (ER diagram corre-
sponding to an activity) can be obtained by converting the UCT of
that activity to the equivalent ERD. An algorithm for converting a
UCT into an ER diagram is presented in Section 2.1.3.

2.1.1 Developing a Unit Conceptual Dependency Table
In this Section, we address Step 2 of our proposed method-

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

342 • Managing Information Technology in a Global Economy

ology: developing a Unit Conceptual Dependency Table (UCT)
from a number of input CDs. In order to merge the CDs corre-
sponding to each arc of the activities in the functional model, we
represent each CD in a canonical form, called a Unit CD Table
(UCT). A UCT is a table where each tuple represent a Unit CD.

Definition 2.1.1.1 A Unit CD (UCD) is a CD consisting of
an arc and its associated nodes.

Definition 2.1.1.2 A UCT is the canonical form of a set of
UCDs represented as a 4-tuple <Arc Type Node1 Node2> if the arc
in the UCD is binary, and a 5-tuple <Arc Type Node1 Node2 Node3
if the arc in the UCD is a ternary arc.

We divide a CD into two parts: nodes and arcs. A node is a
concept in the conceptual dependency theory [27,28]. Thus, PPs,
ACTs, PAs, and AAs represent nodes. Arcs include the concep-
tual dependencies, conceptual cases, and conceptual relations dis-
cussed in section 2.2. In order to facilitate our discussion, we
classify the various types of arcs described in the CD theory as
follows:

1. Binary Arc: A binary arc connects two concepts, or
two conceptualizations. We distinguish among the following types
of binary arcs.

a. A-arc. Is a binary arc that connects a PP with a PA, or
an ACT with an AA.

b.C-arc. Is a binary arc that connects two
conceptualizations, such that one is causing the other.

c. Cl-arc. Is a binary arc that connects a conceptualization
with a PP, such that the PP specifies the location of the
conceptualization.

d. Ct-arc. Is a binary arc that connects a conceptualization
with a PP, such that the PP specifies the time of occurrence of the
conceptualization.

e. I-arc. Is a binary arc that connects a PP with an M-arc
(see below). We notice that in the case of the I-arc, one of the nodes
of the arc is itself an arc.

f. M-arc. Is a binary arc that connects a PP with an ACT.
g. L-arc. Is a binary arc connecting two PPs such that

there is a locational dependency between the two PPs.
h. O-arc. Is a binary arc connecting a PP with an ACT

such that the PP is an objective case of the ACT.
i. P-arc. Is a binary arc connecting two PPs such that

there is a possessive dependency between the two PPs.
2. Ternary arc. Is one that connects three concepts. Ex-

amples of ternary arcs are those used in the directive and recipient
cases (see discussion in Section 2.2). The State-change arc is also
a ternary arc. We distinguish among the following types of ternary
arcs.

a. D-arc. Is a ternary arc joining two directive PPs with an
objective PP.

b. R-arc. Is a ternary arc joining the source, recipient, and
objective PPs.

c. S-arc. Is a ternary arc that describes the state change of
a PP, and connects the PP to its initial and final states.

The various arc types, graphical representation, and their
description in the CD theory are listed in Figure 1. In order to
represent a CD in its canonical form, we first decompose the CD
into units CDs. Each of these unit CDs are then represented as a
tuple of a UCT.

Now we describe how to derive a unit conceptual table from
a conceptual dependency diagram (CD). We first describe the
procedure algorithmically and then illustrate the algorithm with an
example.

Algorithm 2.1.1: decomposing conceptual dependency
diagrams

Input: A CD.
Output: UCT
Procedure:
 begin

1. For each C-arc in the CD:
a. Detach the nodes (from the CD) that were connected

by the arc.
b. Repeat Step a to the (sub) CDs that evolve from the

previous step, until no C-arc exists.
2. Eliminate all I-arcs.
3. Represent all Cl arcs as binary arcs, attaching the ACT

with the PP indicating the location of the ACT.
4. For all Ct-arcs, represent the PP indicating the time of

occurrence as the AA of the ACT.
5. A Ct-arc represents the time of occurrence of an ACT,

which is a modifier of the ACT.
6. For each arc in the CDs obtained from the previous

steps:
a. Identify the nodes connected by the arc.
b. Detach the arc and its associated nodes from the CD.
c. Construct a corresponding tuple in the UCT.

 end

Graphical Representation Type Description

 A Attributive dependency

 D Directive case

 I Instrumental case

 M Two-way dependency

 O Objective case

 R Recipient case

 P Prepositional Case

 S State Change of a PP

 Figure 1: Classification of Arc Types

Arc Type Node1 Node2 Node3
(a1) M PRODUCE Employee
(a2) M OPERATE Employee

(c) S Machine temp=x temp=x+t
(d1) O PRODUCE Product
(d2) O OPERATE Machine
(e) D Product Shop-floor FG inventory
(f) R Raw material Employee Vendor

Table 1. An example Unit CD

2001 IRMA International Conference • 343

2.1.2 Merging Unit Conceptual Dependency Tables
This Section addresses Step 3 of our proposed methodol-

ogy. The UCTs obtained from the previous step are merged into an
integrated UCT. This step is repeatedly applied to the UCTs
corresponding to the arcs and lower level activities to obtain that
corresponding to higher-level activities. When merging two or more
UCTs we need to compare concepts and establish equivalence.
This is accomplished by applying the following rules. The equiva-
lence rules have been adapted from [33].

Rules 2.1.2.1: Merging PPs
1. If two PPs A and B have the same domain then they are

equivalent.
2. If two PPs A and B have different domains, then

a. If the domain of B contains the domain of A, then add
a containment dependency (the default relationship being ISA)
between them. Also, all attributes of B are inherited by A.

b. If the domains of A and B are overlapping, then create
a third PP, AB, such that the domain of AB is the union of those of
A and B, and the attributes of AB are the intersection of the at-
tributes of A and B. Add two containment dependencies: between
AB and A, and between AB and B.

c. If the domains of A and B are disjoint and they have no
common attributes, then they are kept separately. If A and B have
some common attributes, they can be merged using the rules for
merging PPs with overlapping domains, or kept separate, depend-
ing on the object granularity intended for the database. As an
example, if A is machine operator and B is sales manager, then
since A and B have common attributes (that any employee may
have), a third PP Employee can be created, since the domain of
Employee is the union of those of machine operator and sales
manager.

Rules 2.1.2.2: Merging ACTs

1. Two ACTs connecting equivalent concepts are equiva-
lent if they have only nonclashing attributes.

Definition: A nonclashing attribute is one that can be present
in both ACTs.

2. If the concepts connected by two ACTs are not equiva-
lent, the conflicting nodes are resolved using the rules for merging
PPs.

3. If the conflicting nodes are resolved to be equivalent,
then test the ACTs for equivalence using rule 1 for merging ACTs.

4. If the conflicting nodes are generalized to a higher class,
then replace the PPs of the ACT with the new generalized class,
and apply rule 1for testing the equivalence of the ACTs. As an
example, let the ACT be “register”, and the connected PPs are
“undergraduate-student” and “course” in one case, and “graduate-
student” and “course” in the other. If the object granularity is to be
maintained at the level of “student”, then the two ACTs can be
merged into one, with the PPs “student” and “course” connected
by it. Note that two specialization edges can be created between
the PP “student” and the PPs “undergraduate-student” and gradu-
ate-student”.

Algorithm 2.1.2: CD Merging

Input: Two UCTs (T
1
, T

2
).

Output: A new UCT, resulting from the merger of the UCTs
contained in T

1
 and T

2
.

Procedure:
 begin

For each row i in T
1

For each row j in T
2

a. For each node k, node l such that k Î i and lÎj
b. if node k, node l are both PPs, then compare them using

rules 2.1.2.1
c. else if node k, node l are both ACTs, then compare

them using rules 2.1.2.2
d. If for all nodes in row i there is an equivalent node in row

j and vice versa then merge them into one
e. Else append row i to T

2

End if
End for
End for
end

EXAMPLE
We use table 1 and 2 to illustrate algorithm 2.3.2. The PPs

“Filling line” and “Machine” are merged to “Machine”, and “Raw
material” and “Material” merged to “Material”. No row in table1
is equivalent to any row in table 2, so we append the rows of table
1 to table2. The output is shown in table 3.

Arc Type Node1 Node2 Node3
(a) M MOVE Employee
(b) O MOVE Material
(c) D Material Filling line Inventory

Table 2. Unit conceptual dependency table

Arc Type Node1 Node2 Node3
(a) M MOVE Employee
(b) O MOVE Material
(c) D Material Machine Inventory

(a1) M Produce Employee
(a2) M OPERATE Employee
(c) S Machine temp=x temp=x+t

(d1) O PRODUCE Product
(d2) O OPERATE Machine
(e) D Product Shop-floor FG inventory
(f) R Material Employee Vendor

Table 3. Merged table

2.1.3 Conversion of a Unit Conceptual Dependency Table to
the Conceptual Schema

This Section addresses Step 4 of our proposed methodol-
ogy. As in the previous sections, we first describe the algorithm
and then illustrate it with an example.

Algorithm 2.1.3: Converting a UCT to a conceptual schema
Input: A UCT.
Output: An ER diagram corresponding to the UCT.
Procedure:
begin
For each row in the UCT:

1. If the node is a PP, represent it as an entity.
2. If the node is an ACT, represent it as a relationship.
3. If the node is a PA or an AA, represent it as an attribute.
4. If the arc-type is A, represent the dependent concept as

an attribute of the governor concept.
5. If the arc-type is D, then there are four associated PPs:

344 • Managing Information Technology in a Global Economy

source, destination, object, and actor.
a. If $p

i
, p

j
, p

k
 | (p

i
, p

j
, p

k
 ® p

l
), where p

i
, p

j
, p

k
 are the

four associated PPs and i ¹ j ¹ k ¹ l, then create a 4-way relationship,
connecting the four PPs by the ACT.

b. If the above condition cannot be met, then if, $p
i
, p

j
 |

(p
i
, p

j
 ® p

k
), where p

i
, p

j
, p

k
 are any of the three PPs object, source,

and destination, and i ¹ j ¹ k, then create a 3-way relationship,
connecting the three PPs by the ACT. The actor is connected by a
binary relationship with the object.

c. If the above conditions are not satisfied, then create
three binary relationships: (actor, object), (object, source), (object,
destination).

End if
6. If the arc-type is R (or Cl), then there are three associ-

ated PPs: sender, recipient, object (actor, object, location).
a. If exists $p

i
, p

j
 | (p

i
, p

j
 ® p

k
), where p

i
, p

j
, p

k
 are any

of the three PPs sender, recipient, object (or actor, object, loca-
tion), and i ¹ j ¹ k, then create a 3-way relationship, connecting the
three PPs by the ACT.

b. If the above conditions are not satisfied, then create
three binary relationships: (p

i
, p

j
), (p

i
, p

k
), and (p

j
, p

k
).

End if
7. If the arc-type is M, or O, connect the PPs through the

ACT.
8. If the arc-type is P, connect the two PPs by a relation-

ship “location”, if the dependency is locative, or “possessed-by”,
if the dependency is possessive.

9. If the arc-type is S, represent the state as an attribute of
the PP, and the values of the state as values of the attribute.
End for
end

Example
The ER diagram corresponding to the UCDs in Table 3 is

shown in Figure 2, and is obtained by applying algorithm 2.1.3.

M a ter ia l

In v e n to ry M a c h in e

E m p lo ye e P ro d u ct

S h op floo r
F in i sh e d

g o od s
in v e n to ry

V e n d o r S en d s

M o v e1

P R _ B Y

M o v e2

Figure 2. Conceptual model for UCT shown in Table 3.

3. CONCLUSIONS
In this paper we have described a methodology for develop-

ing a conceptual data model from functional specifications ex-
pressed in natural languages. The importance of developing such a
methodology has been emphasized in the literature time and again.
The methodology utilizes the theory of conceptual dependencies
that has been applied to multiple natural language understanding
systems. In addition to identifying the various data items from
natural language specifications, the methodology described in this
paper also includes integrating individual conceptual dependency
diagrams into an overall schema for the application context. A
prototype system has been developed that can take a natural lan-
guage description as input and develops a conceptual schema as
output.

The methodology described in this paper can also be
useful in schema/view integration in OLTP applications in rela-
tional database platforms as well as OLAP and data warehouse
designs. Other areas of application include software engineering,
machine translation of natural language specifications, natural lan-
guage interfaces to database applications, and data modeling and
representation.

REFERENCES
1. Adam, N. and Gangopadhyay, A. “A Form-Based Natu-

ral Language Front-End to a CIM Database”, IEEE Transactions
on Knowledge and Data Engineering, 9(2): 238-250, March/April
1997.

2. Adam, N., Gangopadhyay, A., Clifford, J. “A Form-
Based Approach to Natural Language Processing”, Journal of
Management Information Systems, 11(2): 109-135, Fall 1994

3. Adam, N. and Gangopadhyay, A. “An N-ary View Inte-
gration Method Using Conceptual Dependencies”, in proceedings
of the Hawaii International Conference on System Sciences, Janu-
ary 1995.

4. Batini, C. and Lenzerini, M. “A Methodology for Data
Schema Integration in the Entity Relationship Model,” IEEE Trans-
actions on Software Engineering, SE-10(4):450-313, 1984.

5. Batini, C. and Lenzerini, M. and Navathe, S. B. “A Com-
parative Analysis of Methodologies for Database Schema Integra-
tion,” ACM Computing Surveys,18(4), 1987.

6. Bouzeghoub, M. and Gardarin, G. and Metais, E. “Da-
tabase Design Tools: An Expert System Approach,” in Proceed-
ings of the International Conference on Very Large Databases,
1985.

7. Bouzeghoub, M. and Comyn-Wattiau, I. “View Integra-
tion by Semantic Unification and Transformation of Data Struc-
tures,” in Entity-Relationship Approach: The Core of Conceptual
Modeling Kangassalo, H. (editor), 381-398, 1991.

8. Buneman, P. and Davidson, S. and Kosky, A. “Theoreti-
cal Aspects of Schema Merging,” in Lecture Notes in Computer
Science 580. Springer Verlag 1992.

9. Carswell, J. L. and Navathe, S. B. “SA-ER: A Method-
ology that Links Structured Analysis and Entity-Relationship
Modeling for Database Design,” in 5th International Conference
on ER Approach, 1987.

10. Chen, P. “The Entity-Relationship Model—Toward a
Unified View of Data,” ACM Transactions on Database Systems,
1(1), 1974.

11. Chen, P. “From Ancient Egyptian Language to Future
Conceptual Modeling,” in Conceptual Modeling Current Issues
and Future Directions, Lecture Notes in Computer Science 1545,
56-64, 1999.

2001 IRMA International Conference • 345

12. Chen, P. “English Sentence Structure and Entity-Rela-
tionship Diagrams,” Information Sciences, 29:97-149, 1983.

13. Chen, P. P. “English, Chinese, and ER Diagram,” Data
and Knowledge Engineering, 23(1): 5-14, 1997.

14. Elmasri, R. and Navathe, S. B. Fundamentals of Data-
base Systems, Benjamin/Cummings Publishing Company, Inc., (3rd

Edition) 2000.
15. Feng, J. and Crowe, M. “The Notion of ‘Classes of a

Path’ in ER Schema,” in Advances in Databases and Information
Systems, Lecture Notes in Computer Science 1491, 218-232, 1999.

16. Geller, J. and Mehta, A. and Perl, Y. and Neuhold, E. and
Sheth, A. “Algorithms for Structural; Schema Integration,” in Ng,
P. and Ramamoorthy, C. V. and Seifert, L. C. and Yeh, R. T. editors,
Proceedings of the Second International Conference on Systems
Integration, 274-284, 1992.

17. Hatchman, S. “Practitioner Perceptions On The Use of
Some Semantic Concepts in the Entity-relationship model,” Euro-
pean Journal of Information Systems, 4, 31-27, 1995.

18. Kesh, S. “Evaluating the Quality of Entity Relationship
Models,” Information and Software Technology, 25(9), 1995.

19. Lanka, S. “Automatically Inferring Database Schemas,”
in Proceedings of the Ninth International Joint Conference on Arti-
ficial Intelligence, 317-319, 1985.

20. Maier, R. “Evaluation of Data Modeling,” in Advances
in Databases and Information Systems, Lecture Notes in Computer
Science 1491, 232-245, 1999.

21. Malhotra, R. and Jayaraman, S. “An Integrated Frame-
work for Enterprise Modeling,” Journal of Manufacturing Sys-
tems, 11(4): 424-311, 1992.

22. Moody, D. L. “Metrics for Evaluating the Quality of
Entity Relationship Models,” in Conceptual Modeling-ER ’98,
Lecture Notes in Computer Science 1507, 211-225, 1998.

23. Navathe, S. and Elmasri, R. and Larson, J., “Integrating
User Views in Database Design,” IEEE Computer, Vol. 19, 50-42,
1984.

24. Navathe, S. and Savasree, A. “A Practical Schema Inte-
gration Facility using an Object-Oriented Approach,” Journal of
Computers and Software Engineering, 3:4, 1994.

25. Pernul, G. and Tjoa, A. M. “A View Integration Ap-
proach to the Design of Multilevel Secure Databases,” in Proceed-
ings of the 10th International Conference on Entity Relationship
Approach, 1991.

26. Rosenthal, A. and Reiner, D. “Database Design Tools:
Combining Theory, Guesswork, and User Interaction,” in
Lochovsky, F. H. editor, Entity-Relationship Approach to Data-
base Design and Querying, North-Holland, New York, 1989.

27. Schank, R. C. “Conceptualizations Underlying Natural
Language,” in Schank, R. C. and Colby, K. M. editors, Computer
Models of Thought and Language, 1973.

28. Schank, R. C. “Conceptual Dependency Theory,” in
Conceptual Information Processing, North-Holland/American
Elsevier, 22-82, 1975.

29. Shanks, G. G. “Conceptual Data Modeling: An Empiri-
cal Study of Expert and Novice Data Modellers,” Australian Jour-
nal of Information Systems, 4:2, 43-73, 1997.
30. Spencer, R. and Teorey, T. and Hevia, E. “ER

Standards Proposal,” in Kangassalo, H. editor, Entity-
Relationship Approach: The Core of Conceptual Modeling,

North-Holland, New York, 425-432, 1991.
31. Wand, Y, Storey, V. C., and Weber, R. An Ontological

Analysis of the Relationship Construct in Conceptual Modeling.
ACM Transactions on Database Systems 24(4): 494-520, 1999.

32. Yao, S. B. and Waddle, V. and Housel, B. “View Model-
ing and Integration Using the Functional Data Model,” IEEE Trans-
actions on Software Engineering, SE-8(4): 531-553, 1982.

33. Young, R. E. and Vesterager, J. “An Approach to CIM
System Development whereby Manufacturing People can Design
and build their own CIM Systems,” International Journal of Com-
puter Integrated Manufacturing, 4(5): 208-299, 1991.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/methodology-conceptual-database-

design-natural/31639

Related Content

Leveraging Entrepreneurial Ambition Through Innovative Technologies and Knowledge Transfer

Within a National Defense Technological and Industrial Base
João Manuel Pereira (2021). Handbook of Research on Multidisciplinary Approaches to Entrepreneurship,

Innovation, and ICTs (pp. 83-97).

www.irma-international.org/chapter/leveraging-entrepreneurial-ambition-through-innovative-technologies-and-

knowledge-transfer-within-a-national-defense-technological-and-industrial-base/260553

The Distinctiveness of Online Research: Descriptive Assemblages, Unobtrusiveness, and Novel

Kinds of Data in the Study of Online Advocacy
Damien Lanfrey (2013). Advancing Research Methods with New Technologies (pp. 48-68).

www.irma-international.org/chapter/distinctiveness-online-research/75939

Project Contexts and the Possibilities for Mixing Software Development and Systems

Approaches
D. Petkov, S. Alter, J. Wing, A. Singh, O. Petkova, T. Andrewand K. Sewchurran (2012). Research

Methodologies, Innovations and Philosophies in Software Systems Engineering and Information Systems

(pp. 360-375).

www.irma-international.org/chapter/project-contexts-possibilities-mixing-software/63272

Construction of Building an Energy Saving Optimization Model Based on Genetic Algorithm
Xin Xuand Xiaolong Li (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-15).

www.irma-international.org/article/construction-of-building-an-energy-saving-optimization-model-based-on-genetic-

algorithm/328758

Ontology Learning from Thesauri: An Experience in the Urban Domain
Javier Nogueras-Iso, Javier Lacasta, Jacques Teller, Gilles Falquetand Jacques Guyot (2010). Ontology

Theory, Management and Design: Advanced Tools and Models (pp. 247-260).

www.irma-international.org/chapter/ontology-learning-thesauri/42893

http://www.igi-global.com/proceeding-paper/methodology-conceptual-database-design-natural/31639
http://www.igi-global.com/proceeding-paper/methodology-conceptual-database-design-natural/31639
http://www.irma-international.org/chapter/leveraging-entrepreneurial-ambition-through-innovative-technologies-and-knowledge-transfer-within-a-national-defense-technological-and-industrial-base/260553
http://www.irma-international.org/chapter/leveraging-entrepreneurial-ambition-through-innovative-technologies-and-knowledge-transfer-within-a-national-defense-technological-and-industrial-base/260553
http://www.irma-international.org/chapter/distinctiveness-online-research/75939
http://www.irma-international.org/chapter/project-contexts-possibilities-mixing-software/63272
http://www.irma-international.org/article/construction-of-building-an-energy-saving-optimization-model-based-on-genetic-algorithm/328758
http://www.irma-international.org/article/construction-of-building-an-energy-saving-optimization-model-based-on-genetic-algorithm/328758
http://www.irma-international.org/chapter/ontology-learning-thesauri/42893

