
2001 IRMA International Conference • 411

Specification of Components Based on the
WebComposition Component Model

Martin Gaedkea and Klaus Turowskib

a.Telecooperation Office (TecO), University of Karlsruhe, Vincenz-Priessnitz Str. 1, D-76131 Karlsruhe, Germany,
E-mail: gaedke@webengineering.org

b.Business Information Systems, University of the Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg,
Germany, E-mail: turowski@informatik.unibw-muenchen.de

ABSTRACT
Developing application systems that use the World Wide Web (WWW, Web) as an application platform suffers from the absence of
disciplined approaches to develop such Web-applications. Besides, the Web’s implementation model makes it difficult to apply well-
known process models to the development and evolution of Web-applications. On the other hand, component-based software develop-
ment appears as a promising approach that meets essential requirements of developing and evolving highly dynamic Web-applications.
With respect to Web-applications, its main objective is to build Web-applications from (standardized) components. Founded on these
insights and based on a dedicated component model, we propose an approach to a disciplined specification of components.

1 WEBCOMPOSITION COMPONENT MODEL
The WebComposition component model (Gellersen &

Gaedke, 1999) describes the way of composing Web-applications
from components. It bridges the gap between design and imple-
mentation by capturing whole design artifacts in components of
arbitrary granularity. The resolution of a component is not preset
but can vary depending on the level of detail required by the design
concept in question. A component may represent, e.g., an atomic
feature such as the font size attribute, a complex navigation struc-
ture, implementations of hypermedia design-patterns, or simply
compositions of other components. In this way, WebComposition
supports the bridging of the gap between the design and the imple-
mentation model by offering a high-resolution implementation
model relying on code-abstractions. We construct complete target
language resources by compiling compositions of these compo-
nents. In the following sub-sections we describe the
WebComposition approach, which is based on the WebComposition
component model. The complete WebComposition approach de-
fines a disciplined procedure of composing Web-applications with
components (Gaedke, 2000). It is a synthesis of a component-
oriented process model with a dedicated Web-application frame-
work, reuse management, and a dedicated component-technology.

Evolutionbus

Domain specific evolution by integrating domain
specific services

Evolution by extending the domain set

Application
Domain

Application
Domain

Application
Domain

Application
Domain

Web-based Application

Figure 1: Dimensions of a Web-application’s evolution space

1.1 WebComposition Process Model
The requirements for a software system change as time goes

by. It is obvious that many kinds of influences are responsible for
this, e.g. new regulations, changes in corporate identity or an exten-
sion of functionality. Such maintenance tasks are difficult to handle
if we did not design the application with the possibility of later
changes and extensions in mind.

The WebComposition Process Model focuses on the evolu-
tion of Web-applications by reusing components. It consists of
three main-phases. The phases are derived from the common phases
of (object-oriented) process models as well as solutions addressing
the need of software reuse, and taking the principles of the Web
into account. The process model follows a spiral consisting of
evolution analysis and planning, evolution design and the execu-
tion of evolution. The first phase deals with common problems in
strategic planning of the applications’ functionality respectively
with Domain Engineering. Domain Engineering has been described
as a process for creating a competence in application engineering
for a family of similar systems. The last two phases reflect the two
different views towards reuse: consumer view (development with
reuse) and producer view (development for reuse). We facilitate
the evolution of an application following these phases by a frame-
work, which maps the results of each phase directly to compo-
nents. We explain the process in the following.

To allow for a disciplined and manageable evolution of a
Web-application in the future it makes sense not to design the
initial application on the basis of the concrete requirements identi-
fied at the start of the project. Instead the initial application should
be regarded as an empty application that is suitable for accommo-
dating functionality within a clearly defined evolution space.

This approach is based on domain engineering. During the
analysis phase we determine the properties of an application do-
main. During the design phase we transform this information into
a model for the application domain. From this, we can determine
the required evolution space and, during the implementation phase
of the domain engineering process, we can construct the initial
application as a framework ready to accommodate any kind of
functionality that lies within the evolution space of the domain.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

412�� • Managing Information Technology in a Global Economy

execution of
evolution evolution

design

evolution
analysis

strategic system
planning

strategic evolution
planning

WebComposi t ion
Reuse-Repository

application
domain analysis

application
domain design

component design
and realisation

<<service>> <<service>>

evolution

ev
ol

ut
io

nService-
Factory

Service-
Factory

Service-
Factory

Figure 2: Complete evolution process

We can extend this view to several application domains.
Therefore, we use the term evolutionbus for the basic architecture
of a Web-application. The evolutionbus is the initial application
for all abstract application domains of a Web-application, cf. Fig-
ure 1.

The evolutionbus enables the management and collaboration
of domain-components, i.e. components that implement specific
application domains such as Web-based procurement, reporting,
or user driven data exchange. These domain-components (also called
Services within the WebComposition approach) also represent
prototypes for future services of the same application domain.
The evolution can take place in two clearly defined ways:
· Domain specific evolution (evolution design) – The extension

of a domain through new services, e.g. by prototyping an exist-
ing service of a domain. Another possibility is that the domain
itself changes or that it receives more functionality, which re-
quires the modification of the domain’s initial service that serves
as a prototype for other services.

· Evolution of the domain set (evolution execution) – The evolu-
tion of an application is also possible through the modification
of the domain set. The extension of an application’s functional-
ity by adding a new application domain takes place, e.g. when
a shopping basket and corresponding functionality is added to
a Web-based product catalog. The integration of a new domain
is realized by connecting a new initial service to the evolution
bus (this mechanism can be facilitated using dedicated editors
or automated by factories, cf. Factory design-pattern).

Figure 2 gives a detailed overview of the complete process.

1.2 Reuse Management
It is hoped that growing numbers of components increase

the probability that a component fitting a certain purpose exists.
On the other hand, the difficulty associated with finding such a
component also increases with larger numbers of components. As
soon as a lot of components are available finding appropriate com-
ponents becomes one of the main problems of code reuse and of
the CBSE (component-based software engineering) approach es-
pecially. In short, this so-called component dilemma states that the
probability to own a component that can be used to solve a spe-
cific problem increases with the number of available components
while at the same time the effort needed to locate such a compo-
nent within the set of available components increases as well. The
retrieval of components in libraries is therefore a widely discussed

problem. Component repositories can be an answer to problems
posed by a situation in which a human developer cannot be ac-
quainted with all of those components (let alone know all the
details about them).

Repositories intended for reuse can employ different meth-
ods for the classification and representation of components to
improve the chance of finding a component matching a given devel-
opment problem and to present an augmented perspective of the
stored components. The commonly used representation methods
usually belong to (at least) one of the following categories: con-
trolled and uncontrolled indexing or methods that contain semantic
information. Also hypertext-based systems are mentioned some-
times.

In the WebComposition Process Model the WebComposition
Repository is the responsible tool for the administration of reus-
able components (cf. Figure 2). There is no single program, which
constitutes the repository. Instead, the basic mode of operation is
the cooperation of at least three system entities: a component
store, at least one Metadata Store, and a search or browsing tool
(Repository Tool). The tool can utilize the information stored in the
Metadata Stores to provide advanced retrieval abilities or it can
display information from the Component Store augmented with
additional information provided by the Metadata Stores. We shape
tools to work with the information of certain sets of Metadata
Stores. Furthermore, we propose a disciplined approach to specify
components in a consistent and reuse friendly way (see section 4).

1.3 Dedicated Component Technology for the Web
The Web Composition Markup Language (WCML) was in-

troduced in (Gaedke, Schempf, & Gellersen, 1999) to offer a con-
venient way to define and represent components. WCML is an
application of the eXtensible Markup Language (XML) and al-
lows a (tag-based) definition of components, properties, and rela-
tionships between components on top of WebComposition’s ob-
ject-oriented prototype-instance-model (Gellersen & Gaedke,
1999). As an application of XML the WCML is platform inde-
pendent, easy to parse, and it is rigorous in terms of well-formed or
valid documents.

Within the WCML model we describe a Web-application as
a composition of components. From the perspective of the progress
of different processes, Web-applications can consist of a hierarchy
of components that each correspond to whole parts of Web-appli-
cations with resources or fragments of resources. On the other
hand, for certain parts of a Web-application only information from
analysis or design may exist. Components within the WCML-
model are identifiable through a Universally Unique Id (UUID).
They contain a state in the form of typed attributes, called proper-
ties, which resemble simple name-value-pairs. Further, the value
of a property can be defined through static text or WCML language
constructs and must correspond to the data-type of the property.

The before mentioned concept of developing component
software by composition is realized with WCML language con-
structs. Each component can be based on any number of other
components and use their behavior by referencing them or by using
them as prototypes. A modification of a component can therefore
consistently change all components that use it.

2 SPECIFYING WEBCOMPOSITION COMPONENTS
To store components in a repository and to further retrieve

and reuse them, we have to describe their interface and behavior in
a consistent and unequivocal way. In short, we have to specify
them. Software contracts offer a good solution to meet the special
requirements of specifying components. Software contracts go

2001 IRMA International Conference • 413

back to MEYER, who introduced contracts as a concept in the Eiffel
programming language. He called it programming by contract
(Meyer, 1988).

S yntactic leve l

B ehavio ra l leve l

In tra -com ponen t
synch ron iza tion leve l

In te r-com ponen t
synch ron iza tion leve l

Q ua lity -o f-se rv ice leve l

Figure 3: Software contract levels

Software contracts are obligations to which a service donator
(a component) and a service client agree. There, the service donator
guarantees that
· a service it offers, e.g. calculate balance or determine demand,
· under certain conditions, which have to be met by the service

client, e.g. the provision of data necessary to process the ser-
vice,

· is performed in a guaranteed quality, e.g. with a predetermined
storage demand or with an agreed response time, and

· that the service has certain external characteristics, e.g. the speci-
fied interface.

· Figure 3 shows contract levels according to (Turowski, 1999).
At syntactic level, we conclude basic agreements. Typical parts
of these agreements concern names of services (offered by a
component), names of public accessible attributes, variables, or
constant values, specialized data types (in common based upon
standardized data types), signatures of services, as well as the
declaration of error messages or exception signals. To do so, we
use e.g. programming languages or Interface Definition Lan-
guages (IDL) like the IDL that was proposed by the Object
Management Group (OMG). The resulting agreement guaran-
tees that service client and service donator can communicate
with each other. With this, we put the emphasis on enabling
communication technically. Semantic aspects remain unconsid-
ered.

Agreements at behavioral level serve as a closer description
of a component’s behavior. They enhance the basic agreements of
the syntactic level, which mainly describe the syntax of an inter-
face. Agreements at syntactic level do not describe how a given
component acts in general or in borderline cases.

As an example, we could define an invariant condition for a
component stock keeping at behavioral level, which says that the
reordering quantity for each (stock) account has to be higher than
the minimum inventory level. Known approaches to specify be-

havior are based on approaches to algebraic specification of ab-
stract data types, cf. e.g (Ehrig & Mahr, 1985). To describe behav-
ior, we extend the specification of an abstract data type by condi-
tions. These conditions describe the abstract data type’s behavior
in general (as invariant conditions) or at specific times (pre condi-
tions or post conditions). In general, conditions are formulated as
equations, and as axioms they become part of the specification of
an abstract data type. The Object Constraint Language (OCL)
(Rational Software et al., 1997) is an example for a widespread
notation to specify facts at the behavioral level. It complements
the Unified Modeling Language (UML).

Agreements at intra-component synchronization level regu-
late the sequence in which services of a specific component may be
invoked or navigated to, and synchronization demand between its
services. Here, e.g., we may lay down that a minimum inventory
level has to be set before it is allowed to book on a (stock) account
for the first time, or that it is not allowed to carry through more
than one bookkeeping entry at the same time for the same account.

At inter-component synchronization level, we come to agree-
ments that regulate the sequence in which services of different
components may be invoked. Here, e.g., we may define that a
certain service, which belongs to a component shipping, and which
refers to a certain order, may only be processed after a service,
which belongs to a component sales, and which refers to the same
order, has been processed at any time before.

There exist various approaches to specify components at
the synchronization levels. These approaches base, e.g., on using
process algebras, process calculi, or on using temporal logics. In
addition, (semi formal) graphical notations are in use, e.g. Petri net-
based notations.

As an extension to functional characteristics, we have
to describe non-functional characteristics of components.
Non-functional characteristics are specified at the quality-
of-service level. Examples for these characteristics are the
distribution of the response time of a service or its availability.

We propose to use the OMG IDL or WCML-prototypes
(syntactic level), the UML OCL (behavioral level), and the UML
OCL with temporal extension (inter- and intra-component syn-
chronization level) to specify WCML components. At the qual-
ity-of-service level we so far use natural language. These specifica-
tions are encapsulated in standardized XML markup to ease its
use in the Web environment.

Figure 4 shows an example of how we specify the process
component PrintInvoice as part of a WCML service
OrderProcessing at behavioral level. There, we use a pre condition
for the component PrintInvoice. It ensures that printing an invoice
is allowed, if and only if the corresponding order was delivered
before. Furthermore, there is a post condition that explains in
detail, how the invoice amount was calculated.

<Service>
 <UUID>OrderProcessing</UUID>
 <ProcessComponent>
 <UUID>OrderProcessing</UUID>
 <BehavioralLevel>
 <Method>
 <Name>PrintInvoice</Name>
 <Signature><Name>at</Name><Type>Order</Type></
Signature>
 </Method>
 <OCL>
 <PRE>

414�� • Managing Information Technology in a Global Economy

 self.Order->exists(a:Order | a = at and at.Delivered =
True)
 </PRE>
 <POST>
 at.InvoiceAmount =
 at.OrderPositions->iterate(p:Position; b:Amount = 0 |
 b + p.Quantity * p.PiecePrice * (1 – p.Discount)) * (1
– at.Discount)
 </POST>
 </OCL>
 </BehavioralLevel>
 </ProcessComponent>
...

</Service>

Figure 4: Examples for the XML-based specification of com-
ponents at behavioral level using OCL

In this example we use WCML-interfaces for prototypes on
the syntactical level as shown in Figure 5. The WCML markup
uses an official Document Type Definition that describes the gram-
mar of the WCML components. For reasons of simplicity we do
not use schemas and namespaces in this example (even though the
WCML-compiler supports these). The WCML-component may
be used as prototype for other components and for syntax check-
ing in the WCML-Compiler.

<?xml version=”1.0" encoding=”UTF-8" ?>
<!DOCTYPE wcml SYSTEM “http://webengineering.org/REC/
wcml/wcml2.dtd”>
<wcml>
 <component uuid=”Order” referable=”false”>
 <property name=”TechnicallyPracticable” mode=”interface”
type=”boolean” />
 <property name=”Delivered”
 mode=”interface” type=”boolean” />
 <property name=”InvoiceAmount”
 mode=”interface” type=”double” />
 <property name=”Discount”
 mode=”interface” type=”double” />
 ...
 </component>

</wcml>

Figure 5: The specification of a component at syntactical
level using WCML-prototypes

3 CONCLUSION
We have pointed out that the coarse-grained implementation

model of the Web hinders the representation of abstract design
concepts in actual code. The resulting gap between implementa-
tion and design model is a burden to the use of modern software
engineering practices in Web projects. The WebComposition ap-
proach with its implementation technology WCML bridges this
gap and allows designing for reuse by a dedicated process model.

The WebComposition Process Model describes a consistent
approach to the development of Web-applications as component
software. It introduces the concept of an evolution-oriented pro-
cess model that allows for the integration of components using the
abstract concept service. In this view a Web-application is a set of
services that are grouped by certain domains. The services are
modeled as components with the WebComposition Markup Lan-
guage. WCML is an application of XML and is in concordance
with the basic principles of the Web. The application domains are

described through services that correspond to domain-components.
The evolution by application domains is a central part of the pro-
cess model and is described through the so-called Evolutionbus, a
framework for the integration of domain-components. In this pa-
per we proposed a standardized way to describe components on a
software contract level architecture. The use of a standardized
approach like presented in this paper is essential for a disciplined
evolution of Web-applications.

The WebComposition Process Model has been successfully
applied to several real world applications. The advantages for the
evolution could be verified in a three-year project for a large inter-
national Web-application “E-Victor Procurement Portal” at the
company Hewlett-Packard that has been developed according to
the process model, and using the described component technolo-
gies.

EXAMPLES
For information about the WCML-Compiler and the

WebComposition approach please feel free to browse: http://
webengineering.org

REFERENCES
Ehrig, H., & Mahr, B. (1985). Fundamentals of Algebraic Specifi-

cation 1: Equations and Initial Semantics. Berlin: Springer.
Gaedke, M. (2000). Komponententechnik für Entwicklung und

Evolution von Anwendungen im World Wide Web. Aachen:
Shaker Verlag.

Gaedke, M., Schempf, D., & Gellersen, H.-W. (1999, May 11-14,
1999). WCML: An enabling technology for the reuse in object-
oriented Web Engineering. Paper presented at the Poster-Pro-
ceedings of the 8th International World Wide Web Conference
(WWW8), Toronto, Ontario, Canada.

Gellersen, H.-W., & Gaedke, M. (1999). Object-Oriented Web
Application Development. IEEE Internet Computing, 3(1), 60-
68.

Meyer, B. (1988). Object-Oriented Software Construction.
Englewood Cliffs: Prentice Hall.

Rational Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys,
ICON Computing, IntelliCorp, i-Logix, IBM, ObjecTime,
Platinum Technology, Ptech, Taskon, Reich Technologies, &
Softeam. (1997). Object Constraint Language Specification:
Version 1.1, 1 September 1997. Available: http://
www.rational.com/uml [1999, 04-17].

Turowski, K. (1999). Standardisierung von Fachkomponenten:
Spezifikation und Objekte der Standardisierung. Paper pre-
sented at the 3. Meistersingertreffen, Schloss Thurnau.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/specification-components-based-

webcomposition-component/31656

Related Content

Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait

Recognition
Parul Arora, Smriti Srivastavaand Shivank Singhal (2016). International Journal of Rough Sets and Data

Analysis (pp. 45-64).

www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-

for-gait-recognition/150464

Modeling Image Quality
Gianluigi Ciocca, Silvia Corchs, Francesca Gaspariniand Raimondo Schettini (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 5973-5983).

www.irma-international.org/chapter/modeling-image-quality/113054

Method of Fault Self-Healing in Distribution Network and Deep Learning Under Cloud Edge

Architecture
Zhenxing Lin, Liangjun Huang, Boyang Yu, Chenhao Qi, Linbo Pan, Yu Wang, Chengyu Geand Rongrong

Shan (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-

edge-architecture/321753

Has Bitcoin Achieved the Characteristics of Money?
Donovan Peter Chan Wai Loonand Sameer Kumar (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 2784-2790).

www.irma-international.org/chapter/has-bitcoin-achieved-the-characteristics-of-money/183989

Signal Processing for Financial Markets
F. Benedetto, G. Giuntaand L. Mastroeni (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7339-7346).

www.irma-international.org/chapter/signal-processing-for-financial-markets/112431

http://www.igi-global.com/proceeding-paper/specification-components-based-webcomposition-component/31656
http://www.igi-global.com/proceeding-paper/specification-components-based-webcomposition-component/31656
http://www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-for-gait-recognition/150464
http://www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-for-gait-recognition/150464
http://www.irma-international.org/chapter/modeling-image-quality/113054
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/chapter/has-bitcoin-achieved-the-characteristics-of-money/183989
http://www.irma-international.org/chapter/signal-processing-for-financial-markets/112431

