
Issues and Trends of IT Management in Contemporary Organizations 197

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
The claim of improved efficiency and decreased complexity of software of using tools such as Aspect/J or Hyper/J to separate different
concerns in OO applications does not seem to have any theoretical underpinning. In this paper, we attempt to review the current research
and suggest theoretical framework for complexity ranking in OO applications coded with Hyper/J.

Toward Entropy Based Metrics For
Separation Of Concerns

Jana Dospisil and Nisha Leena Sinha Roy
School of Network Computing, Monash University, Australia {jana.Dospisil, NishaRoy}@infotech.monash.edu.au

INTRODUCTION
The primary objectives of software engineering discipline are to

improve the quality of developed software, and provide tools for re-
ducing the software complexity. These objectives possibly lead to
reduced cost of software development, facilitate maintenance and al-
low evolution and extension of the software.

For some time it has been estimated that over 70% of software
development effort is spent in testing and maintenance of software
[25]. The reports from large commercial projects, which utilize the
object-orientated techniques, indicate that the expected cost savings
in maintenance have not been delivered. The increased complexity
and size of software projects have led to the development of many
different concepts for breaking a system into less complex and man-
ageable modules [8]. The principle of separation of concerns also
made its way into OO design.

The source of the problem in software development is that some
kinds of behavior or functionality cross cut or are orthogonal to classes
in many object-oriented components and they are not easily modular-
ized to a separate class. Examples of such behavior include the
following: synchronization and concurrency, performance optimiza-
tion, exception handling and event monitoring, coordination and in-
teraction protocols, and object views.

Recent research at Xerox PARC in Aspect Oriented Program-
ming (AOP) [16] and Multidimensional separation project at IBM
[19] seek to alleviate this. Language constructs and compilers inter-
leave component and aspect definitions (programs) appropriately to
formulate a unified and executable program. The objective of these
tools is to reduce the complexity and promote easy maintenance.

Motivation and Background
Hyper/J: Ossher and Tarr [19] assert that the separation of con-

cerns and aspect-oriented programming are at the core of software
engineering and have sparked the development of many tools and
approaches to modularization of software. There is now widespread
realization in that a design and implementation that is solely based on
class components has its limitations. This is because object-oriented
languages, such as C++, Smalltalk and Java, are not capable of express-
ing certain aspects of applications in a reusable way. Tarr and Osher
[23] state that �Done well, separation of concerns can provide many
software engineering benefits, including reduced complexity��. To
measure the quality of separation either in N-dimensional space or
even the orthogonal separation seen in Aspect/J, the new set of metrics
is required.

Aspect/J: Aspects tend not to be units of system�s functional
decomposition, but rather the properties that impact the performance
of semantics of components. The examples include synchronization
of concurrent objects and memory access patterns. The objective is
to alleviate some of the complexity and tangled code that results due
to cross cutting/ orthogonal behavior; this behavior is inevitable in
any real application. Aspect Weaverä provides compositional service
based on the concept of join points [16, 17].

So far, there have been no metrics or measures to clearly indicate
that the complexity of the code has been reduced, and improvements
in maintainability have been achieved. This paper deals with theoreti-
cal underpinning of proposed metrics to measure the complexity of
modules in Hyper/J. Unfortunately, due to the limited size of this
paper we are not able to demonstrate the methodology in full scale.

The layout of this paper is as follows. Section one provides the
overview of current OO metrics including entropy based complexity
measures. The second section starts with the overview of Hyper/J
concepts followed by the condensed description of the theoretical
underpinning of the proposed complexity framework in Hyper/J.

Overview of OO Metrics
There is a growing concern that software metrics should have a

solid base. Measurement theory can be used to translate mathematical
properties of measures to empirical (intuitive) properties. Rigorous
approach to OO metrics has been suggested by a number of researches.
In literature, more than hundred software measures for OO applica-
tions can be found. Since 1995, the trend towards incorporating mea-
surement theory into all software metrics has led to identification of
scales for measures thus providing some perspective on dimensions. In
[13], the following scales are suggested: ordinal, interval, ratio and
absolute.

Axiomatic approach was proposed by Weyuker [24]. This frame-
work is based on a set of nine axioms against which software could be
formally evaluated. The description and criticism can be found in [13].
Fenton [10] uses the term software metrics to describe the following
artifacts:
� A number which is derived, usually empirically, from a process or

code (LOC),
� A scale,
� An attribute which is used to provide specific functionality (�port-

ability�).
These descriptions typically lead to a wide spread confusion be-

tween models, and their ability to predict desired software characteris-
tics thus their suitability to be used for estimation purposes. One of the
criticisms of many proposed metrics is the lack of theoretical basis.
Many metrics show dimensional inconsistencies, or their results are
derived from correlative or regression analysis [13].

Zuse based his OO software metrics on measurement theory [21]
analyzed in [25]. The quantitative criteria for software measures in
the area of structured programming are based on the theory of exten-
sive structure and a set of empirical conditions (axioms). The ap-
proach of extensive structure can also be applied to cost estimation
models, design and maintainability measure. He proved that the dy-
namic nature of OO software requires the use of quantitative and
qualitative probabilities and belief structures (e.g. Dempster-Shafer
Function of Belief, the Kolmogoroff axioms, and others).

Chidamber [5] proposed a suite of metrics for OO design which
consists of six metrics with foundation in measurement theory:
Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT),
Number of Children (NOC), Coupling Between Object Classes (CBO),

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4150
IDEA GROUP PUBLISHING

198 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The Response for a Class (RFC), and the Lack of Cohesion Metric
(LCOM). The criticism by Churcher [6] is pointing to the ambiguity of
some metrics, particularly WMC. Hitz [15] and Fetchke [9] showed
that CBO does not use sound empirical relation system, particularly,
that it is not based on the extensive structures. Furthermore, LCOM
metric allows representation of equivalent cases differently thus intro-
ducing additional error.

Coupling and cohesion measures form the important group of
measures in assessment of dynamic aspects of design quality. The
example in Hitz [14] clearly distinguishes the difference between static
and dynamic class method invocation: number of methods invoked by
a class compared to frequency of method invocation. Concise survey
and discussion of coupling including critique of current metrics can be
found in [3] and [27]. The metrics suite capable of capturing dynamic
behavior of objects with regard to coupling and complexity has been
presented by Yacoub in [27]. A set of scenarios in the implementation
depicts dynamic behavior. The Export and Import Object Coupling
metrics are based on percentage of message exchange between class
instances (objects) to the total number of messages. The Scenario
Profiles introduce the estimated probability of the scenario execution.
The complexity metrics are aimed predominantly at the assessment of
stability of active objects as frequent sources of errors.

Entropy Based Complexity Measures
Entropy based complexity measures rely on theory of informa-

tion [11, [4]. The approach taken by Davis and LeBlanc [7] who
quantify the differences between anded and neted structures using
Shannon and Weaver�s concept of information entropy [22]. This
measurement is based on chunks of FORTRAN and COBOL code (rep-
resented by nodes in the DAG) with the same in-degree and the same
out-degree to assess syntactic complexity. In 1976, Belady and Lehman
[2] elaborated on the law of increasing entropy: the entropy of a
system (level of its unstructuredness) increases with time, unless spe-
cific work is executed to maintain or reduce it.

In Harrison [12], software complexity metric is based on empiri-
cal program entropy. A special symbol, reserved word or a function
call is considered as operator (it is assumed that they have certain
natural probability distribution [26]). The probability pi of ith most
frequently occurring operator is defined as (Eq 1)

i

i
i N

fp = Equation 1 Probability of occurrence of i-operator

where fi is the number of occurrences of the ith operator and Ni is total
number of nonunique operators in the program. The complexity is
given (Eq. 2) as

 i

Ni

i
i ppH 2

1
log∑

=

−= Equation 2 Entropy-based complexity measure

The Average Information Content Classification measure (Eq.3):

i

i
Ni

i i

i

N
f

N
fAICC 2

1

log∑
=

−= Equation 3 Average Information Content

Classification
This metric provides only the ordinal position thus restricting

the way of usage. It was tested on C code. It does not indicate the
�distance� between two programs. The work of Bansiya and Davis [1]
introduces similar complexity measure � Class Definition Entropy (CDE)
replacing the operators of Harrison with name strings used in a class.
The assumption that all name strings represent approximately equal
information is related to the possible error insertion by misusing the
string. The metric has been validated on four large projects in C++ and
results have been used to estimate Class Implementation Time Com-
plexity measure.

Single valued measure of complexity is appealing to managers as
the simple indicator of development complexity. However, as dis-
cussed in Fenton�s book [10], single value cannot be used for assess-
ment of quality of the entire product. The measures bound to a single

product attribute (e.g. Comprehensibility or reliability etc) cannot be
used as prediction models or as guidance for improving the quality of
the product.

PROPOSED ENTROPY BASED METRIC
FRAMEWORK FOR SEPARATION OF
CONCERNS

Overview of Hyper/J concepts
The term multi-dimensional separation of concerns denotes the

separation of multiple, arbitrary kinds (dimensions) of concerns si-
multaneously. A clean separation of concerns allows isolation and
encapsulation of all concerns, which promotes traceability and reduces
complexity. Concerns are defined as primary entities for decomposing
software into manageable and comprehensible modules [20], such as
classes, features, aspects and roles. The prevalent kind of concern is a
class (data type). A hyperspace describes the following properties of
concerns: identification, encapsulation, and mutual relationships. The
concern matrix organises units according to dimensions and concerns.
The encapsulation of concerns is accomplished by introducing mecha-
nism of hyperslices. A hypermodule comprises a set of hyperslices
being integrated and a set of relationships, which determine mutual
dependency between hyperslices. The level of mutual dependency is
an important parameter.

Formally, hyperspace is a tuple {U,M,H} where U is a set of units
(methods are primitive units, classes are modules), M is a concern
matrix and H is a set of hypermodules. Hypermodule is a tuple (HS,
CR) where HS is a set of hyperslices and CR is a set of composition
relationships. A hyperslice is a declaratively complete concern

(Chs ∈). A concern is modeled as a predicate, c, over units U. The
unit set is then defined as (Eq. 4)

() (){ }ucUucU |∈= Equation 4 Units set with a concern

Concerns are said to overlap if their unit sets are not disjoint. A
dimension of concern is a set of concerns whose unit sets partition U.
It implies that the concerns within a dimension cannot overlap, and
must cover all the units. This leads to the declarative completeness
constraint. Declarative completeness serves as a mechanism to reduce
high coupling in interrelated units (methods). In order to make
hyperslice declaratively complete, we have to at least declare units
from other hyperslices (thus allowing later binding). For example, the

unit hsu ∈1 calls unit hsuthenUu ∈→∈ 22 , and it must

be implemented in some other hyperslice. We denote these units u2decl
to satisfy the completeness constraint. Hyper/J also defines the Imple-
mentation set (Eq. 5)

() (){ }udeclhsuhsI ¬∈= | Equation 5 Implementation set

A Composition Relationship is a tuple (I,r,f,o) where I is a tuple
of input units, r is a correspondence relationship characterizing the
relationship of units in I, o is an output unit produced using f which is
the composition function (Eq. 6)

() UrIf !×: Equation 6 Composition function

This property means that the hyperslice is self-contained, pro-
viding we define the association called correspondence and supply
corresponding units udecl .

Proposed Entropy based ordering framework
Figure 1 shows graphically a conceptual representation of over-

lapping hypermodules, concerns matrix and self- contained hyperslices.
The hypermodules H2 and H3 overlap through hyperslices hsH3

2 and
hsH2

2. The units u1 and u2 are present in both hypermodules.
Hypermodule complexity ordering: a hypermodule is a message

in which the special symbol carrying the information is a unit ui (method
or a shared variable). In a complex system, the invocation of a unit ui

Issues and Trends of IT Management in Contemporary Organizations 199

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

H3

H1

H2

Hyperspace S1

hsH3
2

hsH2
1

hsH3
1

hsH1
1

C1 ,d1
c2, d2
cn, dn

unit space U

Concern matrix
hsH2

2

units u1,u2

Figure 1: Hyperspace and overlapping hypermodules

is not deterministic; it depends on the occurrence of outside events �
execution scenarios. Let the unit space U be a discrete random vari-
able which occurs with the probability mass function p(u). The mea-
sure of uncertainty of U (entropy) is defined as:

() () ()i
M

i
i upupUH log

1
∑

=

−= Equation 7 Entropy of units

The entropy depends only on the probabilities. The probability
p(ui) of the most occurring unit is the percentage

()
all

ui
i N

fup = where fui is the number of occurrences of the unit ui

and Nall is total number of nonunique units in the hypermodule.
Concerns matrix ordering per hypermodule: the complexity of

the concern matrix defined over the units soace U is the entropy (Eq.
8)

() () ()i
M

i
i cpcpCH log

1
∑

=

−= Equation 8 Entropy of concerns

()
Call

ic
i N

f
cp = where fci is the frequency of occurrence the units

using the concern ci and NCall is the number of all non unique units
using all concerns encapsulated by the hypermodule.

These two ordinal measures provide only ordering of hypermodules
according to their entropic complexities of units and concerns. They
only indicate design differences among hypermodules.

Relative entropy as uncertainty reduction measure: we assume
that relative entropy calculated for units and concerns provides rank-
ing of dependencies among units. Definition: Mutual information is a
measure of the amount of information that one random variable con-
tains about another random variable. Relative entropy is a measure of
distance between two probability mass functions p and q representing
different distributions of units ui. It is also said to be a measure of
inefficiency of assuming that the distribution is q when the true distri-
bution is p. The relative entropy is (Eq. 9)

() () ()
()





= ∑

⊂ i

i

Uu
i uq

upupqpD
i

2log Equation 9 Relative entropy

of units

Mutual information indicates discrepancy between real-time out-
comes and states (with pmf = p) and anticipated design intentions (pmf
= q).

Declarative completeness in Hyper/J: software artifacts are sub-
ject to a completeness constraint in which each declaration unit in a
system must correspond to compatible definition or implementation
in some hyperslice [20]. Let�s consider an execution scenario in which
a set of units U implements a set of concerns C:

() (){ }ucUucU |∈= . Furthermore, assume joint probability

mass function p(u,c) indicating the dependency of units and concerns,
marginal probability mass functions for units and concerns respec-
tively p(u) and p(c) written about the edges of the joint probability
table. The relative entropy between the joint distribution and product
distributions of participating sets I(U;C) is a measure of dependence
between two variables U and C and the product distribution p(u)p(c)

() () () () ()
() ()cpup

cupcupCUHUHCUH
cu

,log,|; ∑∑=−=

Equation 10 Relative entropy for units and concerns
The mutual information is the reduction in the uncertainty in

unit space of U due to knowledge of concern space C (see Figure 2.).

H(U|C) H(C|U)

I(U
;C

)

Figure 2: Relative entropy representation

By using pairs ui and declaration of uidecl as the mutual informa-
tion the hyperslices keep about each other, we can derive the estimate
of efficiency with regard to the declarative overlap in H(U;C). We

assume that uidecluici fff −= where fuidecl is the frequency of units
udecl relevant to correspondence association. Furthermore, joint prob-
ability mass function of units and concerns p(ui,ci) represents the
percentage of units encapsulating a given concern to all non-unique
units in a hyperslice. Tabular representation of joint probability of
concerns/units and marginal probabilities for each component in a
hypermodule provides the following information:
� Estimated complexity of each hyperslice with regard to encapsulated

concerns and relative entropies of hypermodule;
� Ordering of hyperslices in a hypermodule according to their mutual

dependency;
Weighted entropy for ordering units and concerns according to

their contribution to utility: Sometimes we deal with units where it is
necessary to take into account their importance and some qualitative
characteristics. We need to associate elementary unit with both the
probability with which it occurs and its qualitative weight. A criterion
for a qualitative differentiation of the units of a given scenario repre-
sented by the relevance, the significance, or the utility of the informa-
tion they carry with respect to an outcome, with respect to a qualita-
tive characteristic. The occurrence of a unit removes a double uncer-
tainty: the qualitative one, related to the probability with which it
occurs, and qualitative one, related to a given qualitative characteris-
tic. For instance, a unit of a small probability can have a great utility
with respect to concurrency aspects; likewise, a unit of great probabil-
ity can have small impact on maintainability (we shall relate this
observation to utility). The weights may have either objective or
subjective character. Thus, the weight of one unit may express some
qualitative objective characteristics, but also it may express the subjec-

200 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

tive utility of the respective unit with respect to the software com-
plexity. The weight ascribed to an elementary unit may also be related
to the subjective probability with which respective units are used, and
it does not always coincide with the objective probability.

In order to distinguish the units u1, u2, u3,� un in the unit space U
according to their importance with respect to a given qualitative charac-
teristics of implemented or referred to concern, we assign to each unit a
non-negative weight proportional to its importance and significance.

() ∑
=

−=
n

i
ieiiii upupuwupuwH

1

)(log)()()(;)(

Equation 11 Weighted entropy

Where () ()
all

ui
ii N

fupup == Equation 12 Probability of occur-

rence for a unit ui
The weights are constructed as ratio of the objective probability

of the occurrence of this unit to the amount of information it holds.

() ()
()ie

i
i up

upuw
log

−= Equation 13 Objective probability weights

assignment
In this case we obtain the following expression for weighted en-

tropy.

() ()
2

1
∑

=

=
n

i
ii upuH Equation 14 Weighted entropy for a

hypermodule
The tabular representation of entropy with objective weights for

each hypermodule enables ordering of hypermodules with regard to
different aspects of concern (e.g.concurrency implementation, memory
utilization and others).

CONCLUDING REMARKS
This paper provides an overview and theoretical underpinning of

entropy based complexity metrics for ordering hypermodules and
hyperslices according to their complexity in Hyper/J. We are propos-
ing the following complexity measures:
� Hypermodule complexity ranking,
� Concerns matrix ranking per hypermodule,
� Relative entropy as uncertainty reduction measure,
� Weighted entropy for ranking units and concerns according to their

contribution to utility.
We acknowledge that the following aspects still have to addressed:

� Parser is being constructed to allow data collection in Java classes
and Hyper/J,

� Validation study on a larger scale must be conducted on at least two
comparative applications:
o Case 1: the application is designed and coded without separation of
concerns concept in mind
o Case 2: the application is designed and coded specifically for Hyper/J

With regard to the limited scope of this paper the methodology
addressing the practical use of entropy metrics and precise interpreta-
tions of metrics could not be covered.

REFERENCES
[1] Bansiya, J., Davis, C., Etzkorn, L., An Entropy-Based Complexity

Measure for Object-Oriented Designs, Theory and Practice of Object
Systems, Vol. 5(2), pp.11-118, 1999

[2] Belady, L.A. and Lehman, M.M. A Model of a large program devel-
opment. IBM Systems Journal, Vol 15(3), pp.225-252, 1976

[3] Briand, L. Daly, J., and Wurst. A Unified Framework for Coupling

Measurement in Object Oriented Systems. IEEE Transactions on
Software Engineering, Vol. 25, No. 1 Jan/Feb 1999, pp. 99-121

[4] Cover, T.M. and Thomas, J.A., �Elements of Information Theory,�
Willey Series in Telecommunications, John Wiley & Sons, new
York, 1991

[5] Chidamber, S. and Kemerer, C. A Metric Suite for Object Oriented
Design. IEEE Transactionas on Softwrae Engineering, Vol.20,No.6,
June 1994, pp.476-49

[6] Churcher, N. and Shepperd, M.. A Metric Suite for Object Oriented
Design. IEEE Transactionas on Softwrae Engineering, Vol.20, No.6,
June 1994, pp.476-49

[7] Davis, J.S., and LeBlanc, R.J. A Study of the Applicability of Com-
plexity Measures. IEEE Transactions on Software Engineering, Vol
14(9), pp.1366-1371, 1988

[8] Dijkstra, E.W. A Discipline of Programing. Prentice Hall, 1976
[9] Fetchke, T. Software Metriken bei der Objectorientierten

Programmierung. Diploma Thesis, GMD, St. Augustin, 1995
[10] Fenton, N. and Pfleeger, S. L. Software Metrics: A Rigorous &

Practical Approach. International Thomson Computer Press, 1997
[11] Gray, R. M., �Entropy and Information Theory�, Springer-Verlag,

New York, 1990
[12] Harrison, W. An Entropy-Based Measure of Software Complexity.

IEEE Transactions of Software Engineering, Vol. 18, No. 11, Nov.
1992, pp. 1025-1029

[13] Henderson-Sellers, B. �Object-Oriented Metrics measures of Com-
plexity�, Prentice Hall PTR, 1996

[14] Hitz, M., and Montazeri, B. Measuring Product Attributes of Ob-
ject-Oriented Systems. In Proc. 5th European Software Engineering
Conference (ESEC�95), Barcelona, Spain, 1995, pp. 124-136

[15] Hitz, M., and Montazeri, B. Chidamber & Kemerer�s metric Suite:
A Measurement Theory Perspective. IEEE Transactions on Soft-
ware Engineering, Vol. 22. No. 4, April 1996, pp.270-276

[16] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. -
M. Loingtier, and J. Irwin, �Aspect Oriented Programming,� Xerox
Corporation, 1997. http://www.parc.xerox.com/spl/projects/aop/

[17] Kiczales, G., C. Lopes, �Tutorial: Aspect-Oriented Programming
w/AspectJ�, Xerox PARC, www.parc.xerox.com/aop.

[18] Kiczales, G., J. M. Ashley, L. Rodriguez, A. Vahndat, and D. G.
Bobrow, �Metaobject Protocols: Why we want them and what else
they can do,� in Object Oriented Programming: The CLOS Perspec-
tive, A. Paepcke, Ed., MIT Press, 1993, pp. 101- 11

[19] Ossher, H., Tarr, P., Multi-Dimensional Separation of Concerns
and The Hyperspace Approach, Technical Report, IBM T.J. Watson
Research Center, New York, 1998

[20] Ossher, H., Tarr, P., Multi-Dimensional Separation of Concerns in
Hyperspace: Position Paper, IBM T.J. Watson Research Center, New
York, 1998

[21] Roberts, Fred, S. �Measurement Theory with Applications to De-
cision Making, Utility, and Social Sciences�. Encyclopedia of
Mathematics and its Applications, Addison Wesley Publishing Com-
pany, 1979

[22] Shannon, C. E., �A Mathematical Theory of Communication�,
University of Illinois Press, Illinois, 1949

[23] Tarr, P. Ossher, H. Harrison, W, and Sutton, Jr. N degrees of Sepa-
ration: Multi-Dimensional Separation of Concerns. Proc. of the 21st

International Conference on Software Engineering, 1999
[24] Weyuker, E. J., Evaluating Software Complexity Measures, IEEE

Transactions on Software Engineering, Volume: 14 No. 9, Septem-
ber 1988, pp.1357 - 1365

[25] Zuse, H. Software Complexity Metrics/Analysis. Marciniak, J. (Ed):
Encyclopedia of Software Engineering, Vol. I, John Willey& Sons,
Inc. 1994, pp. 131-166.

[26] Zweben, S. and Hasltead, M. The Frequency Distribution of Opera-
tors in PL/I Programs. IEEE Transactions of Software Engineering,
Vol.5. pp. 91-95, Mar. 1979.

[27] Yacoub Sherif M., Ammar, Hany,H., and Tom Robinson. Dynamic
metrics for Object Oriented Designs. Proc. Of 6th International Sym-
posium on Software Metrics (METRICS�99), Boca Raton, Nov. 4-6,
1999, pp. 50-61

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/toward-entropy-based-metrics-

separation/31749

Related Content

Getting the Best out of People in Small Software Companies: ISO/IEC 29110 and ISO 10018

Standards
Mary-Luz Sanchez-Gordon (2017). International Journal of Information Technologies and Systems

Approach (pp. 45-60).

www.irma-international.org/article/getting-the-best-out-of-people-in-small-software-companies/169767

Complexity Analysis of Vedic Mathematics Algorithms for Multicore Environment
Urmila Shrawankarand Krutika Jayant Sapkal (2017). International Journal of Rough Sets and Data

Analysis (pp. 31-47).

www.irma-international.org/article/complexity-analysis-of-vedic-mathematics-algorithms-for-multicore-

environment/186857

Reasoning on vague ontologies using rough set theory
 (). International Journal of Rough Sets and Data Analysis (pp. 0-0).

www.irma-international.org/article//288522

Using Statistical Models and Evolutionary Algorithms in Algorithmic Music Composition
Ritesh Ajoodha, Richard Kleinand Maria Jakovljevic (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 6050-6062).

www.irma-international.org/chapter/using-statistical-models-and-evolutionary-algorithms-in-algorithmic-music-

composition/113061

The Systems Approach View from Professor Andrew P. Sage: An Interview
Miroljub Kljajicand Manuel Mora (2008). International Journal of Information Technologies and Systems

Approach (pp. 86-90).

www.irma-international.org/article/systems-approach-view-professor-andrew/2540

http://www.igi-global.com/proceeding-paper/toward-entropy-based-metrics-separation/31749
http://www.igi-global.com/proceeding-paper/toward-entropy-based-metrics-separation/31749
http://www.irma-international.org/article/getting-the-best-out-of-people-in-small-software-companies/169767
http://www.irma-international.org/article/complexity-analysis-of-vedic-mathematics-algorithms-for-multicore-environment/186857
http://www.irma-international.org/article/complexity-analysis-of-vedic-mathematics-algorithms-for-multicore-environment/186857
http://www.irma-international.org/article//288522
http://www.irma-international.org/chapter/using-statistical-models-and-evolutionary-algorithms-in-algorithmic-music-composition/113061
http://www.irma-international.org/chapter/using-statistical-models-and-evolutionary-algorithms-in-algorithmic-music-composition/113061
http://www.irma-international.org/article/systems-approach-view-professor-andrew/2540

