
230 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION
In response to increasing concerns about software development

failures, the Software Engineering Institute (SEI) pioneered a software
process improvement model in 1988, with the fully developed version
of the Capability Maturity Model for Software (SW- CMMâ) appear-
ing in 1993. Since the early nineties, there have been comparable
improvement models introduced in the system engineering community
as well, some of which have been published and widely accepted: Sys-
tems Engineering Capability Maturity Model (SE-CMM) also known
as the Electronic Industries Alliance Interim Standard (EIA/IS) 731,
Systems Engineering Capability Model (SECM); and the Integrated
Product Development Capability Maturity Model (IPD-CMM). The
resulting avalanche of models and standards has been described by
Sarah Sheard (Software Productivity Consortium) as a �Framework
Quagmire.� In December of 2000, the SEI initiated the Capability
Maturity Model�Integrated (CMMISM) project, which combines best
practices from the systems and software engineering disciplines. Note:
CMMâ and CMMISM are copyrights and service marks of the Software
Engineering Institute.

Issues and concerns regarding such an integration were articulated
by Barry Boehm and Fred Brooks as early as 1975. Boehm suggested
that the adoption of systems engineering reliability techniques by
software engineers was counterproductive. Moreover, Brooks� Law
suggests that a common system engineering solution to schedule slip-
page (add more people) will only make late software project even
later.

More recently, Boehm (1994) expressed concerns that, in spite
of the central function of software in modern systems, the two engi-
neering disciplines have not been well integrated. Boehm articulated
similarities and differences shown in Table 1.

Software engineering is defined by IEEE Standard 610.12 as the
application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software�that is, the
application of engineering to software. The International Council on
Systems Engineering (INCOSE) defines systems engineering as an in-
terdisciplinary approach and means to enable the realization of suc-
cessful systems.

Definitions of the two disciplines from the CMMISM

Systems Engineering�The systems engineering discipline cov-
ers the development of total systems, which may or may not include
software. Systems engineers focus on transforming customer needs,
expectations, and constraints into product solutions and supporting
those product solutions throughout the product life cycle.

Software Engineering�The software engineering discipline cov-
ers the development of software systems. Software engineers focus on
applying systematic, disciplined, and quantifiable approaches to the
development, operation, and maintenance of software.

Process Models: Should the Software
and Systems Engineering Communities
Capitalize On Their Similarities Or Go

Their Separate Ways?
Rick Gibson, PhD

Department of Computer Science and Information System, American University, Washington, DC
Tel: (202) 885-2735, rgibson@american.edu

Similarities Differences
Definition and analysis involves
manipulation of symbols.

Software is not subject to physical
wear or fatigue

Highly complex aggregation of
functions, requiring satisfying
(though not optimizing) among
multiple criteria.

Copies of software are less subject
to imperfections or variations

Decisions driven by need to satisfy
quality attributes such as reliability,
safety, security, and maintainability.

Software is not constrained by the
laws of physics.

Easy and dangerous to suboptimize
solutions around individual
subsystem functions or quality
attributes.

Software interfaces are conceptual,
rather than physical�making them
more difficult to visualize.

Increasing levels of complexity and
interdependency.

Relative to hardware, software
testing involves a larger number of
distinct logic paths and entities to
check.

 Unlike hardware, software errors
arrive without notice or a period of
graceful degradation.

 Hardware repair restores a system
to its previous condition; repair of a
software fault generally does not.

 Hardware engineering involves
tooling, manufacturing, and longer
lead times, while software involves
rapid prototyping and fewer
repeatable processes.

Table 1: Software and system engineering similiarities and
differences

One purpose of the CMMISM was to evolve the software CMM
while integrating the best features of the systems engineering capabil-
ity models. The combination of the practices of the models into one
single framework required more than just combining practices because
of differences in interpretation, focus, and terminology. Compro-
mises and intentional inefficiencies were required in order to integrate
these models. For example, the CMMISM was released with two repre-
sentations, continuous and staged, as shown in Table 2, to allow sys-
tems and software groups, respectively, to continue using the model
representation with which they were already familiar.

With the CMMISM there is significant coverage provided for the
engineering dimension, more detailed coverage of risk management
and measurement, and enhanced analysis that was less specific in the
Software CMM. Moreover, the CMMISM (continuous representation)
process areas are grouped by categories, which include: Process Man-
agement, Project Management, Support, and Engineering. The Engi-
neering category includes the process areas shown in Table 3, which

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4159
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 231

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Systems Engineering�Continuous Software Engineering�Staged

Migration path from EIA/IS 731 Migration path from SW-CMM
Encourages a focus on process areas to
address business objectives�avoids the
maturity plateau trap.

Encourages a proven sequence of
improvements beginning with
basic management practices and
progressing through successive
levels.

Encourages comparisons across
organizations by process areas.

Encourages comparisons among
organizations using maturity
levels.

Provides increased visibility into
capability achieved within a process
area. Can measure below Level 2.

Cases studies and empirical data
show return on investment for
process improvement.

Provides a focus on risks specific to each
individual process areas.

Summarizes process
improvement results in a single
maturity level number.

Encourages the generic practices from
higher capability levels be more evenly
and completely applied to all process
areas.

Table 2: Continuous and staged representations

Process Areas Purpose
Requirements Management Manage the requirements of the project�s

products and product components and to
identify inconsistencies between those
requirements and the project�s plans and
work products.

Requirements Development Produce and analyze customer, product, and
product components.

Technical Solution Develop, design, and implement solutions to
requirements.

Product Integration Assemble the product from the product
components, ensure that the product, as
integrated, functions properly, and deliver
the product.

Verification Assure that selected work products meet
their specified requirements.

Validation Demonstrate that a product or a product
component fulfills its intended use when
placed in its intended environment

Table 3: Engineering process areas

are intended to integrate software and systems engineering by target-
ing product-oriented business objectives.

INTEGRATED PROCESS MODEL
BENEFITS

Rassa (2001) summarizes the benefits of the CMMISM project as
follows:
� Common, integrated vision of improvement for all organizational

elements;
� Means of representing new discipline-specific information in a stan-

dard, proven process improvement context;
� Efficient, effective assessment and improvement across an

organization�s multiple process disciplines;
� Reduced training and assessment costs.

According to the SEI �The CMMISM effort is intended to support
process and product improvement and to reduce redundancy and elimi-
nate inconsistency when using separate stand-alone models. The goal
is to improve efficiency, return on investment, and effectiveness by
using models that integrate disciplines such as systems engineering and
software engineering that are inseparable in a systems development
endeavor.� (SEI CMMI Frequently Asked Questions). With the arrival
of the CMMISM, a wider continuum of the product life cycle has been
targeted for possible enhancement, no longer limiting process im-

provement only to the development of software. This integrated
approach provides a reduction in the redundancy and intricacy result-
ing from the use of multiple, separate process improvement models.
For organizations that wish to assess their process improvement ef-
forts against multiple disciplines, the CMMISM provides some econo-
mies of scale in model training and assessment training. This one
evaluation method can provide separate or combined results for the
fields of software and system engineering. Furthermore, software
organizations can also focus on the amplifications for software engi-
neering within the engineering shared process areas and take advan-
tage of any systems engineering amplifications that are helpful. Al-
though still subject to debate, a distinction is made between base and
advanced engineering practices as model constructs. The CMMISM

provides the groundwork for enterprise wide process improvement
with a new emphasis on products and services as well as process. This
emphasis is on both organizational maturity and process capability,
for the CMMISM directs increased attention to measurement and analy-
sis.

EVIDENCE OF SIMILARITIES: CMMISM

GENERIC PRACTICES
As explained by Ahren et al. (2001), the CMMISM draws a distinc-

tion between model components that are required for process im-
provement (i.e., satisfied goals) and components that are expected to
play an essential role as indicators that the required components are in
place, and institutionalized as common features of the organization�s
culture. A practice is a statement of an expected component, and may
be unique to a single process area (specific practice) of may apply
across all process areas (generic practice). In short, generic practices
(see Table 4) imply a bridge across the disciplines of software and
systems engineering.

Generic Practice Maturity Level Common Feature
Establish an Organizational Policy 2 Commitment
Establish Requirements and Plan the Process 2 Ability
Provide Resources 2 Ability
Assign Responsibility 2 Ability
Train People 2 Ability
Manage Configurations 2 Directing

Implementation
Identify & Involve Relevant Stakeholders 2 Directing

Implementation
Monitor & Control the Process 2 Directing

Implementation
Objectively Evaluate Adherence 2 Verifying

Implementation
Review Status with Higher-Level
Management

2 Verifying
Implementation

Establish a Defined Process 3 Ability
Collect Improvement Information 3 Directing

Implementation
Establish Quality Objectives 4
Stabilize Subprocess Performance 4
Ensure Continuous Process Performance 5
Correct Common Cause of Problems 5

Table 4: Generic practices

AVOIDING THE RATING GAME
In many ways, the philosophy of process maturity levels is much

like Maslow�s hierarchy, which suggests that before one can address
higher level needs like self-actualization, the needs from lower in the
hierarchy such as food and shelter need to be met. The CMMISM staged
approach provides organizations with a very structured approach to
becoming a more mature institution. The definition of these maturity
levels provides organizations with milestones of achievement. It also
allows organizations to establish where they are in the software pro-
cess improvement continuum. For the past decade, the Software CMM
levels provided a structure and gave organizations milestones in the

232 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

process of becoming more mature, but also had the unintended effect
of creating a competitive rating scale between software organizations.
An assessed process may be adequate in one environment but may not
suffice for a new project in a different environment (Paulk, 1999).
Organizations who use maturity levels to assess contractors run the
risk of neglecting many of other factors that would help determine the
most appropriate contractor to work on a specific project.

The existence of maturity levels also introduces the risk of orga-
nizations setting maturity level goals instead of focusing on improving
software/systems to address business goals. With all of the claims of
return on investment surrounding process improvement efforts, it is
easy to understand why management may strive to reach specific
maturity levels for all the wrong reasons. A communication of this
concept must be made to all stakeholders who will be affected by the
implementation of process improvement. The implementation of a
process improvement program needs to be a part of the means to
achieve the business goal ends. Businesses can easily become preoccu-
pied in reaching a specific maturity level and forget the ends that they
are trying to accomplish. As a result, organizations may end up taking
shortcuts in order to be assessed sooner at a certain level even though
more attention to a specific process would have been beneficial to the
organization in reaching a specific business goal.

In contrast, the systems engineering community adopted an al-
ternative approach to visualizing process improvement: a continuous
representation based on individual process areas. The continuous rep-
resentation evaluates organizations based on capability levels instead
of maturity levels. The main difference is that capability levels apply
to an organization�s process-improvement achievement in individual
process areas. These capability levels are 0 (not performed) to 5
(optimizing). Maturity levels apply to an organization�s overall pro-
cess-improvement achievement using the staged model. Using the
continuous representation, an organization would have a capability
profile, consisting of a list of process areas and their corresponding
capability levels.

One of the clear benefits of continuous representation is that it
provides organizations with the ability to select the order and grouping
of improvement areas that best compliment their business objectives
(Shrum, 2000).

Adopting the continuous representation of CMMISM not only
forces software organizations to define business goals and choose pro-
cess areas that should be implemented first to focus on these goals, but
it also forces companies who are choosing a new subcontractor to do
the same. One of the claimed benefits of a staged representation is
that it facilitates comparisons among organizations. (Shrum, 2000)
While it may simplify comparisons, it does so at the loss of additional
details. Using a continuous representation, the comparison can be
done based on the process areas that are judged by the organization as
important rather than simply comparing the organization�s maturity
score. When using a continuous representation, there is less likelihood
that organizations will try to attain a specific level without reasons
within their business to do so. It provides an incentive to address
processes that would have the greatest impact on their business goals.

Since the continuous representation of the CMMISM implicitly
encourages organizations to base process improvements on defined
business goals, these organizations are less likely to ignore possible
improvements outside of the scope of the CMMISM model. If the
CMMISM model does not provide them with the means to work toward
succeeding on a specific business model, organizations will need to find
alternative process improvement methods. Importantly, there are
several areas that are completely ignored within the CMMISM. Ex-
amples include strategic level processes, such as business strategic plan-
ning, architecture definition and strategic planning and control. This
group of processes focuses on the adjustments needed over time to
meet the changing conditions and requirements of the environment.
(Purvis et al., 1999). Since strategic level processes may have a
greater impact on the core business goals than improved quality, it
may be more beneficial for an organization to focus of these areas
before moving forward with CMMISM processes.

THE NEED TO OVERCOME THE
DIFFERENCES

Despite anticipated problems, bringing systems engineering best
practices into the established software process improvement models is
expected to be very beneficial. Boehm (1994) reminds us that an
important reason to overcome or bridge these differences is to estab-
lish an adequate supply of people who can deal with complex systems
problems. The Bureau of Labor Statistics (1997) estimates of antici-
pated growth in information technology jobs, shown in Table 5, pro-
vides further support for this concern.

Type of Job 1996 Employment 2006 Employment % Change
Database Administrators and
Computer Support

212,000 461,000 118%

Computer Engineers 216,000 451,000 109%
Systems Analysts 506,000 1,025,000 103%
Data Processing Equipment Repair 80,000 121,000 52%
Engineering, Science, and Computer
Systems Managers

343,000 498,000 45%

Table 5: Anticipated employment growth 1996-2006

The final job type, managers, is a significant concern addressed
by Jerry Weinberg in an interview (Layman, 2001). Weinberg ex-
plains that the software development problems are growing faster
than individuals� levels of competence. Moreover, he asserts that
the current state of practice is one where we need to apply a few
fundamentals (e.g., requirements, reviews, configuration manage-
ment), that is, things known to be useful, but not adopted in the
sense of consistent application.

It has been suggested that the systems engineering�hardware
engineering interfaces have matured nicely over many years, but that
the systems engineering�software engineering interface is not as mature
as the various hardware engineering interfaces.

Meanwhile, the dependency on the systems engineering-software
engineering interface has increased faster than it has matured. Specific
concerns by discipline include:

The State of Systems Engineering
� Most successful projects rely on expertise established with similar

systems.
� Lack of documented processes makes repeatability difficult.
� Development efforts for unprecedented or significantly different

systems often encounter problems.

The State of Software Engineering
� The brief history of software development has been filled with prob-

lems of cost overruns, schedule slippage, and failure to achieve per-
formance goals.

� Systems are increasingly dependent on software, yet hardware typi-
cally gets the most visibility.

Although, many software-only organizations remain adamant
that they do not do systems engineering, all software must run on
some computer system, and interface with others. This perceived
separation of concerns exacerbates the difficulties associated with hard-
ware/software/system tradeoff decisions, which are further compli-
cated by terminology differences and disparate mental models.

However, the integration potential of the CMMISM can allow the
system and software engineering communities to get the most out of
their similarities. The CMMISM allows organizations to tailor the
model to mesh with their own mission and goal statements as well as
their business objectives. Each individual project can use CMMISM

models for individual disciplines and discipline combinations because
the architecture of the CMMISM does not force the employment of
every discipline for every organization implementing it. Before the
CMMISM, the systems engineering models shared many of the same
principles as the software version of CMM, but were written to address

Issues and Trends of IT Management in Contemporary Organizations 233

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

the needs and terminology of the systems engineering community.
Because the CMMISM includes the common and shared elements and
best features of both software and system engineering together with
discipline specific elements, an organization can generate integrated
capability maturity models or discipline specific capability models.
With CMMISM, an organization can still capitalize on these similarities
and improve the efficiency of and the return on investment for pro-
cess improvement. The resulting integrated capability models will adapt
to an organization�s business purposes.

CONCLUSION
The ongoing process improvement efforts centered on integra-

tion of software and systems engineering, as initiated by the SEI�s
CMMISM project, has highlighted two key issues for researchers and
practitioners:
1) A renewed focus on products and business objectives as drivers of

process improvement;
2) Opportunities for high-leverage process improvements.

The concept of an architecture continues to serve as a theoreti-
cal link for both the software/system tradeoffs and the integration of
process improvement efforts. While respecting the legitimate differ-
ences in areas such as reliability testing, it is important to sustain the
hope that overlapping or underlying theories will emerge regarding
areas of common concern such as: requirements, security, safety, and
performance.

In order to achieve true integration of software and system engi-
neering practices into one process improvement model, the remaining
differences of terminology and model construction have to be ad-
dressed. These two communities have well-developed disparate lan-
guages and methodologies that are reflected in their different models,
and entrenched in their organizational cultures. With the adoption of
an integrated process improvement model, an organization can assess
both software and systems engineering functions.

REFERENCES
Ahern, Dennis, Richard Turner, and Aaron Clouse. (2001) CMMI(SM)

Distilled: A Practical Introduction to Integrated Process Improve-
ment. Boston: Addison-Wesley.

Boehm, Barry. (1994) �Integrating Software Engineering and System
Engineering�. The Journal of INCOSE, Volume I, Number I: July �
September

Layman, Beth. (2001). �An Interview With Jerry Weinberg.� Software
Quality Professional, 3:4 (September), pp. 6-11.

Paulk, M. C., Weber, C. V., & Chrissis, M.B. (1999). The Capability
Maturity Model for software. In K. El Emam & N. H. Madhavji
(Eds.), Elements of software process assessment & improvement
(pp. 3-22). Los Alamitos, CA: IEEE Computer Society.

Purvis, R. L., Santiago, J., & Sambamurthy, V. (1999). An analysis of
excluding IS processes in the Capability Maturity Model and their
potential impact. (pp. 31-46). Idea Group Publishing.

Rassa, Bob �Beyond CMMI-SE/SW v1.0�. Software Engineering Insti-
tute, March 13. 2001. http://www.sei.cmu.edu/cmmi/publications/
sepg01.presentations/beyond.pdf

Software Engineering Institute. �Concept of Operations for the CMMI�.
Software Engineering Institute, January 15, 2001 http://
www.sei.cmu.edu/cmmi/org-docs/conops.html.

Software Engineering Institute. �CMMI Frequently Asked Questions.�
Software Engineering Institute, March 2001. http://www.sei.cmu.edu/
cmmi/comm/cmmi-faq.html

Software Engineering Institute. �Transitioning Your Organization from
Software CMM Version 1.1 to CMMI-SW Version 1.0�. Software
Engineering Institute. http://www.sei.cmu.edu/cmmi/publications/
white-paper.html (August 1, 2001).

Shrum, Sandy. �Choosing a CMMI Model Representation.� SEI Inter-
active, December 1999. http://www.stsc.hill.af.mil/crosstalk/2000/
jul/shrum.asp (July 17, 2001).

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/process-models-should-software-

systems/31758

Related Content

Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
Junhua Xu (2024). International Journal of Information Technologies and Systems Approach (pp. 1-18).

www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-

mode/338910

Usability of CAPTCHA in Online Communities and Its Link to User Satisfaction
Samar I. Swaid (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 8066-

8078).

www.irma-international.org/chapter/usability-of-captcha-in-online-communities-and-its-link-to-user-satisfaction/184502

Do We Mean Information Systems or Systems of Information?
Frank Stowell (2008). International Journal of Information Technologies and Systems Approach (pp. 25-36).

www.irma-international.org/article/mean-information-systems-systems-information/2531

Collaborative Environments Based on Digital Learning Ecosystem Approach to Reduce the

Digital Divide
José Eder Guzmán Mendoza, Jaime Muñoz Arteagaand Julien Broisin (2019). Educational and Social

Dimensions of Digital Transformation in Organizations (pp. 27-42).

www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-

reduce-the-digital-divide/215134

Assistive Technology for Supporting Communication, Occupation, and Leisure by Children With

Severe to Profound Developmental Disabilities
Fabrizio Stasolla, Viviana Perilliand Adele Boccasini (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 287-297).

www.irma-international.org/chapter/assistive-technology-for-supporting-communication-occupation-and-leisure-by-

children-with-severe-to-profound-developmental-disabilities/183743

http://www.igi-global.com/proceeding-paper/process-models-should-software-systems/31758
http://www.igi-global.com/proceeding-paper/process-models-should-software-systems/31758
http://www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-mode/338910
http://www.irma-international.org/article/forecasting-water-demand-with-the-long-short-term-memory-deep-learning-mode/338910
http://www.irma-international.org/chapter/usability-of-captcha-in-online-communities-and-its-link-to-user-satisfaction/184502
http://www.irma-international.org/article/mean-information-systems-systems-information/2531
http://www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-reduce-the-digital-divide/215134
http://www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-reduce-the-digital-divide/215134
http://www.irma-international.org/chapter/assistive-technology-for-supporting-communication-occupation-and-leisure-by-children-with-severe-to-profound-developmental-disabilities/183743
http://www.irma-international.org/chapter/assistive-technology-for-supporting-communication-occupation-and-leisure-by-children-with-severe-to-profound-developmental-disabilities/183743

