IDEA GROUPPUBLISHING

I —y

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4272

A New Approach to Components

Zoran Stojanovic and Ajantha Dahanayake
Faculty of Information Technology and Systems, Delft University of Technology, The Netherlands
Tel: +31 15 278 6328, Fax: +31 15 278 6632, {Z.Stojanovic, A.N.W.Dahanayake}@jis.twi.tudelft.nl

ABSTRACT

Component-Based Development (CBD) represents an advanced paradigm for building complex enterprise systems of nowadays. While
the necessary technology has been already settled down in practice, new processes, strategies and techniques for component-based
modeling, analysis and design are still lacking. This paper presents a new approdch to components providing a consistent and traceable
component-based process from business services to implementation artifacts.

INTRODUCTION

During the last years, a new paradigm of Component-Based De-
velopment (CBD) has been introduced. It represents a realization of a
decades-old dream about software systems built from components.
CBD provides a solution for developing faster, cheaper, more adapt-
able and reliable Internet-based, e-business systems. As in many cases
before, first the new technology solutions have been initially adopted
by developers, and then the analysis, specification and design activi-
ties have been modified to reflect the new concepts. While the compo-
nent-based platforms and technologies, COM+ [COM], Enterprise Java
Beans [Sun Microsystems] and CORBA Components [Siegel, 2000]
are now de facto standards, there are strong requirements for methods,
approaches and techniques for developing business-driven component-
based systems targeting available technology [Stojanovic et al., 2001a].
Therefore, a set of consistent component concepts, completely inde-
pendent of technology solutions, must be provided.

The aim of this paper is to provide a more comprehensive and
integrated view on components and component-based development.
By using the technology-independent set of component concepts,. the
paper provides a step toward a consistent and traceable component-
based process from business services to implementation artifacts. The
main idea of this approach is that the same'component way of think-
ing can be applied across different aspects of enterprise systems devel-
opment. In this way, a component, as a service provider with hidden
interior and contract-based interfaces, represents a point of conver-
gence of business and technical concerns, equally well understood by
both'sides.

STATE-OF-THE-ART OF COMPONENTS

The ideas of modularization and software reusability are almost
as old as the idea of software. The NATO Conference in 1968 recog-
nized that development of complex software systems should be-treated
as an engineering discipline, providing the system made from compo-
nents [Mcllroy, 1969]. Since that, the principles of separation of
concerns, encapsulation, and pluggable parts have been distinguishing
good, flexible software system designs from bad through functions,
subroutines, modules, units, packages, subsystems, objects and finally
components.

Different component definitions show that components may
come in different forms and granularity and different participants in
the development process see components differently. However, the
physical perspective on components as binary packages of software is
still predominant. The standard Unified Modeling Language (UML)
treats components as packages of binary code and uses them in de-
scribing system implementation through component and deployment
diagrams [Booch, 1999]. Catalysis, a'component-oriented approach
with its origins in object-oriented. analysis and design methods, defines
a component as a package of not only software code than also other
software artifacts [D*Souza and Wills, 1999]. By [Szyperski, 1998], a
software component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. Gartner Group
defines a runtime software component as a dynamically bindable pack-

This paper appears
Information Resources Management Association International Conference.

in Issues and Trends of Information Technology Management in Contemporary Organizations,

age of one or more programs managed as a unit and accessed through
documented interfaces that can be discovered at runtime [Gartner
Group, 1997].

When introducing components, the question about similarities
and differences between objects and components naturally arises. By
[Udell, 1994] components represent a new silver bullet for system
development in the Internet age, while objects have failed to provide
higher level of reusability. For others, components are nothing else
than larger-grained objects deployed on the network nodes [Booch,
1999]. By [Szyperski, 1998], a component comes to life through
objects and therefore would normally contain one or more classes. In
other debates [Henderson-Sellers et al., 1999] granularity has been
seen as the main issue in distinguishing objects and components. By
Catalysis, components are often larger-grained than traditional ob-
jects, and can be implemented as multiple objects of different classes.

In_the sequel, we will present a consistent and comprehensive
component-based approach that is technology-independent and can
be equally applicable in business modeling, as well as system analysis
and design.

AN INTEGRATED COMPONENT-BASED
APPROACH

For years system developers and integrators have struggled to
translate and interpret business requirements into systems implemen-
tation that at the same time fulfill business goals, delineate business
structure, and provide efficient development of adaptable solutions.
Component-based development; in our opinion, can represent a link
between different perspectives on the system, making a common ground
for business:and technical concerns. Component-based thinking is mean-
ingfuland-equally applicable at the levels of business modeling and system
modeling, as it is in system implementation. Regardless of the context of
usage, the-essence of the component-based approach is the explicit sepa-
ration between the outside and the inside of the concepts being addressed.
This means that only the question WHAT is considered (what useful
services are provided by the particular building block to the outside world)
not the HOW (how these services are actually implemented).

Regarding the context in which components are identified, speci-
fied and used, components can be of different forms, granularity, and
nature. Thus, any attempt to provide a single, general definition of a
component.covering all its possible aspects may be insufficient. Ex-
amining essential properties of a component can be more appropriate:
» Component is as independent as possible from other components,

following “low coupling — high cohesion” principle.

e The interior of a component is completely hidden behind explicit,
well-defined interface through which a component communicates
with other components in the form of providing to and using ser-
vices from them. Interfaces are responsible for specifying what is
the role of the component in the wider context, what the compo-
nent is, what it does, and under what conditions, but not how that
behavior is actually implemented.

* Component is represented through detailed and precise specification
of its provided and required interface(s). Fully specified interfaces by

the proceedings of the

Copyright © 2002, Idea Group Inc.

Issues and Trends of IT Management in Contemporary Organizations 661

pre-conditions, post-conditions, invariants and guarantees actually
form a contract between components - consumers of services and
components - suppliers of services.

» Component denotes composition. It does not exist in isolation; it
takes part in collaborations with other components in order to fulfill
a goal. Composition is an inherent characteristic of a component.
Every component can be represented as a composition of smaller-
grained components, but also can form a larger-grained component
in composition with other components.

At the highest level of abstraction, the whole enterprise can be
considered as a collaboration of its components, i.e. business actors
(people, systems, departments, companies, etc.) that have responsi-
bilities, fulfill roles, manage necessary information,-perform actions,
take part in interactions, and work together to achieve some business
goals. All these actors can be represented as components of ‘the
enterprise; their interior is hidden and not important as long as they
provide correspondent services to fulfill their roles in the enterprise;
they collaborate in the contractual manner in order to fulfill the com-
mon goal.

In the modern enterprise world some roles can be performed by
the information technology (IT) systems. The behavior of the sys-
tem, in the context of the business for which it is implemented, has to
be specified. Functional and non-functional requirements on the sys-
tem must be defined in the form of business concepts and services,
which must be supported and realized by the system. At this level, the
whole system can be considered as a component of a given. enterprise
that performs particular roles and provides services for-automated
business processes. These roles of the system identify the-parts of the
business processes for which the system is responsible and the artifacts
that are involved. Such artifacts-and resources represent the informa-
tion held and acted uponby the system, usually stored in the form of
database.

Figure 1: IT system as a component of an enterprise

Enterprise
Furpass

%% Serdices —— Chrcadn
: ——+» Bensfils
Bugiress
Aclors

Considering cohesive set of services with minimal interfaces pro-
vided by the system to automate business processes for which the
system is responsible represents a good foundation for identification
and specification of business components as providers of those ser-
vices. At this level it is not important how these services of the system
are implemented as long as they, in collaboration, provide expected
behavior of the system in the enterprise. In fact the service seems to
be a pivotal concept that links the business and system perspectives,
providing traceability from business processes, to business compo-
nents and then to software components. Business component inherits
all essential component characteristics and provides business and/or
business-oriented technical services for the business processes in which
the system participates, i.e. it adds certain value'to the business actors
interacting with the system.

Assigning service requirements that should be fulfilled by the
system to autonomous:business components provides decomposing
both requirements and system function into well-partitioned areas,
managing complexity through the implicit divide-and-conquer strat-
egy.

When encapsulated, contractually specified, highly cohesive and
low-coupled providers of services, i.e. business components are de-
fined, they should be put in the context of the system being realized in

terms of system components. At this level system architecture should
be defined. It gives a logical view of the system structure in terms of
system components and dependencies between them. Each previously
defined business component can be represented as one or more system
components. System components as opposite to business components,
provide some lower grained services, which have more technical than
business meaning and therefore do not add value to the actors around
the system. After the system architecture is defined a development
team can assembly a component-based solution by deciding to:
* build business components and/or system components from scratch
using advanced component-based technology,
» _wrap existing assets with proper interfaces to form component-like
structures

* buy components as Commercial-off-the-shelf (COTS) assets
* combine these three strategies

According to traceable usage of component thinking presented
above, three human roles in the system development process using
components can be defined: business analyst (user of components),
system architect (assembler of components) and component devel-
oper (implementator of components). For a business analyst a com-
ponent represents a clear, rigorous, implementation-independent speci-
fication of an encapsulated business service. For a system architect, a
component'is an encapsulated building block of the system architec-
ture with fully specified interfaces to the rest of the system. For
proper assembling of the components into an overall system solution
implementation details are not important as long as exposed inter-
faces are guaranteed. Component developer “opens” a black-box com-
ponent and provides component implementation according to previ-
ously defined business and system requirements, and interfaces that
should be realized. Dialogs between these three roles in the develop-
ment process, as well as their views on components are presented in
Figure 2. In this way the same set of component concepts and way of
thinking are used throughout the development process, providing trace-
ability from business concepts and processes to'implementation arti-
facts.

Figure 2:Dialogs between actors in the development process

s wims, St
R if Cwvpwme i

"irmed o =raea
i b it
e e)
BN A
T g L R e I T TR Sy
b et o w v e ey e el

“RoEn pirkdy gkl s g, e

"Ieed coTooresn e o v v g o o g

ol L) ere———
[] I COTH Crpeas (LIS

= "1 e cmprEn i B
CHAHOpE]] e
nisrincan”

Wikd D Ll B

AneiaT Ferile
[e
e e
fcaied, Sl ol Ry

.
Ihﬂwnl:udm'

| T oo
VS P B

CONCLUSION

There has been a rapid rise of interest in component-based devel-
opment paradigm, followed by the huge marketing hype. By some,
components make objects obsolete; by others components are larger
objects. Because of different points of view on components, variety of
proposed component definitions and loose usage of the term, there has
been much confusion about how to use component concepts effi-
ciently. Physical perspective on components as packages of binary
code has been predominant, significantly reducing the potential ben-
efits from component paradigm.

662 Issues and Trends of IT Management in Contemporary Organizations

The aim of this paper is to provide a more comprehensive and
integrated view on components and component-based development.
The paper defines the set of essential component properties, and an
integrated component approach consisting of different perspectives
(business, system, and software) on the component usage. The same
way of thinking can now be applied from business to software, provid-
ing traceability and consistency along the way. The concept of com-
ponent, as an encapsulated service provider, represents a common
ground for business and technology, well understood by both sides.

At the moment when IT and business have started to fully exploit
components, a new system development paradigm, called web ser-
vices, has emerged [Microsoft, 2001][IBM, 2001]. Web services are
self-contained, self-describing, modular units providing a location in-
dependent business or technical service that can be published, located
and invoked across the Internet. They represent a natural extension
of component thinking and further convergence of business and tech-
nology. From a technical perspective the web service is essentially an
extended and enhanced component interface constructs;~but now in-
stead of maintaining a necessary component in-house, required ser-
vices are invoked across the Internet, without taking care what arti-
facts are responsible for providing them.

REFERENCES

Allen P., Frost S. (1998), “Component-Based Development for Enter-
prise Systems: Applying the Select Perspective”, Cambridge Univer-
sity Press.

Booch, G., Rumbaugh, J., Jacobson, 1. (1999), “The unified modeling
language user guide”, Addisson-Wesley.

COM, Microsoft Component Object Model Technologies, information
available at http://www.microsoft.com/com/

D’Souza D.F., Wills A.C. (1999), “Objects, Components, and Frame-
works with UML: the Catalysis Approach”, Addison-Wesley.

Sun Microsystems, Enterprise JavaBeans, The source-for Java™ tech-
nology at http://java.sun.com

Gartner Group (1997): “Componentware: Categorization and Catalog-
ing,” Applications Development and Management Strategies Re-
search Note, by K. Loureiro and M. Blechar, December 5, 1997,
http://www.gartnergroup.com:

Henderson-Sellers, B., Szyperski, C., Taivalsaari, A., Wills, A., (1999)“Are
Components Objects?” In OOPSLA’99, Panel Discussion.

IBM;(2001), IBM Web Services, available at http://www.ibm/com/
webservices

Mcllroy, M.D. (1969), “Mass Produced Software Components”, Soft-
ware Engineering: Concepts and Techniques, Edited by P. Naur et al.,
Mason/Charter Publishers Inc., New York, pp. 138-150, 1969.

Microsoft (2001), Microsoft .NET, available at http://
www.microsoft.com/net/

Siegel, J. (2000), “CORBA 3: Fundamentals and Programming” OMG
Press, John Wiley & Sons, Inc.

Stojanovic, Z., Dahanayake, A., Sol, H., (2001a) “A Methodology
Framework for Component-Based System Development Support”,
the sixth EMMSAD’01, Interlaken, Switzerland, June 4-5 2001, pp.
XIX-1 — XIX-14.

Stojanovic, Z., Dahanayake, A., Sol, H., (2001b) “An Integrated Com-
ponent-Based Approach to Enterprise System Specification and
Development”, the 3rd ICEIS 2001, Setubal, Portugal, July 7-10
2001, pp. 667-672.

Szyperski C. (1998), “Component Software: Beyond Object-Oriented
Programming”, ACM Press, Addison-Wesley.

Udell J. (1994), “Cover Story: Componentware”, Byte-Magazine, May
1994.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/new-approach-components/31872

Related Content

ICT4D

Sherif H. Kamel (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 3972-
3980).

www.irma-international.org/chapter/ict4d/112839

Traditional Science vs. Design-Type Research
(2012). Design-Type Research in Information Systems: Findings and Practices (pp. 76-93).
www.irma-international.org/chapter/traditional-science-design-type-research/63106

Understanding the Context of Large-Scale IT Project Failures

Eliot Richand Mark R. Nelson (2012). International Journal of Information Technologies and Systems
Approach (pp. 1-24).

www.irma-international.org/article/understanding-context-large-scale-project/69778

Bioinspired Solutions for MEMS Tribology

R. Arvind Singhand S. Jayalakshmi (2018). Encyclopedia of Information Science and Technology, Fourth
Edition (pp. 431-439).

www.irma-international.org/chapter/bioinspired-solutions-for-mems-tribology/183757

Steel Surface Defect Detection Based on SSAM-YOLO
Tianle Yangand Jinghui Li (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-13).
www.irma-international.org/article/steel-surface-defect-detection-based-on-ssam-yolo/328091

http://www.igi-global.com/proceeding-paper/new-approach-components/31872
http://www.irma-international.org/chapter/ict4d/112839
http://www.irma-international.org/chapter/traditional-science-design-type-research/63106
http://www.irma-international.org/article/understanding-context-large-scale-project/69778
http://www.irma-international.org/chapter/bioinspired-solutions-for-mems-tribology/183757
http://www.irma-international.org/article/steel-surface-defect-detection-based-on-ssam-yolo/328091

