
742 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
How do you tailor a general-purpose system development methodology to appropriately fit the specific needs of your company and the
actual domain or product-family you are working with? Moreover, how do you alter a general-purpose methodology to utilise the
domain knowledge possessed by your company? This paper describes a generic framework for tailoring general-purpose, methodologies
in order to deliver domain-specific models.

A Generic Framework for Defining
Domain-Specific Models

Arnor Solberg and Jon Oldevik
SINTEF Telecom and Informatics, Norway

Tel: +47 22067983, Fax: +47 22067350, {arnor.solberg, jon.oldevik}@sintef.no

Audun Jensvoll
EDB4Tel., Norway, audun.jensvoll@edb4tel.com

BACKGROUND AND INTRODUCTION
As a result of the widespread popularity of UML, many compa-

nies have invested in introducing a UML-based methodology. There
are many general-purpose UML-based methodologies on the market
today, among the most popular are UP[1], RUP[2], Catalysis[3] and
Select perspective[4]. Typically these general-purpose methodologies
do not immediately fulfil a company�s need. That is why lots of con-
sultants, researchers and others are in the business of helping compa-
nies to introduce these methodologies as well as customising the gen-
eral-purpose methodology to be appropriate for the actual company
and purpose. A common way of customising a general-purpose meth-
odology is by removing, adding and/or merging defined tasks, phases,
roles and models/artefacts based on different criteria such as domain,
customers, market (e.g. in-house or off-the-shelf) and size of com-
pany. However, it does not seem to be any standard and formalised way
of customising a methodology to produce domain-specific models.

We have for some time worked with customising methodologies
to satisfy specific needs. Our customisation has been accomplished by
taking a set of different OO-based methodologies (among others RUP,
UP, OOram[5], Select Perspective, Catalysis, Open Process[6], as well
as self-developed methodologies), methodology expertise and experi-
ence as input to a collaborative process with super-users (here users =
developers that will use the methodology). By massaging this input
through an iterative and incremental process in which we have analysed
the company�s need, existing methodology (or practice) in use within
the company, company culture etc, the output has been a tailored
methodology. Some results of this work have been the Business Object
Methodology (BOM)[7] and the Magma methodology handbook[14].
Recently we have been working with Telenor [The major Norwegian
telecom-company (http:\\www.Telenor.com)] and EDB4Tel [Com-
pany offering administrative software-products for the telecom-
industry (http://www.EDB4Tel.com)] with a methodology called
TeMOD[8]. TeMOD is now in widespread use within the Telenor group.
What we discovered during our work with developing TeMOD for
Telenor was that even if we gained substantial benefits from tailoring
general-purpose methodologies to the needs of the company, the com-
pany itself is pretty diverse. Thereby, a need was expressed of even
more tailoring of TeMOD to fit the purpose of different domains and
product families within the Telenor group. A main request was to get a
methodology that was tailored to utilise existing domain knowledge.
However, one of the goals of making TeMOD was to have a common
methodology used throughout the company to achieve a common way
of developing and specifying systems. So it was clear that we didn�t
want to end up with a set of proprietary special purpose methodolo-
gies, one for each domain and system development group. Our chal-
lenge became to keep TeMOD as the common methodology for

the company, producing specifications in a standard way, and
at the same time get TeMOD to support specific needs and
utilise the existing domain knowledge.

The most popular general-purpose UML-based software engi-
neering methodologies have both diversities and commonalties. One
frequent commonality is that they are model-driven. A model-driven
methodology signifies that the methodology prescribes a set of models
to be produced during the system development process. TeMOD is
indeed a model-driven methodology. Our motion to the above de-
scribed challenge was a generic framework that provides utilities for
tailoring model-driven methodologies in general, in order to utilise the
domain knowledge possessed by the company and for producing do-
main-specific models. Using the framework, the tailoring will only
affect the expression of the models prescribed by the general-purpose
methodology.

FRAMEWORK DESCRIPTION
By applying the tailoring framework a domain-specific refer-

ence-model is produced. The reference-model describes the extensions
of the actual general-purpose methodology made for a specific do-
main. It consists of:
� UML-profiles,
� existing (reusable) models
� and patterns

The set of UML-profiles, existing models and patterns defined in
a reference-model are developed, structured and aligned according to
the chosen general-purpose software engineering methodology. UML-
profiles are used for defining domain concepts and reference architec-
ture, existing models are prepared for reuse and patterns describe stan-
dard solutions of recurring problems within the domain. Thus, tailor-
ing a software engineering methodology using the framework, consti-
tutes a leveraging of the methodology in an environment of domain
concepts, defined reference architecture, existing models, and pat-
terns. The profiles are the most stable asset in that it defines the
overall, reusable concepts within the domain. The existing models and
patterns are typically changing, but presumably they constitute a valu-
able and growing pool of reusable assets.

Figure 1 shows the structure of use of the framework. The tailor-
ing framework defines how to build appropriate UML-profiles, pat-
terns and existing models, and it defines how to use the reference-
model in correspondence with the chosen general-purpose methodol-
ogy. The domain-specific reference-model is built using the tailoring
framework and is structured according to the chosen methodology.
The profile maker and pattern modeller have the main responsibilities
of building the domain-specific reference-model. The system modeller
uses the chosen methodology�s prescribed models and process, as well

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4293
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 743

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

as the reference-model for the actual domain, to build a concrete
model. The system modeller might also feed back reusable models to be
part of the reference-model. Those models will then be categorised
according to the chosen methodology, and become an existing model
of the domain-specific reference-model.

Figure 1 indicates use of a general-purpose methodology, xx-
methodology, which specifies three main models as outcome of the
development process: A business model, an architecture model, and a
platform-specific model. The yy-reference-model (supporting the yy-
domain or yy-product-family) is structured according to the xx-meth-
odology and specifies a set of UML-profiles, patterns and existing
model in accordance with the model architecture of the xx-methodol-
ogy (business, architecture and platform-specific). The concrete zz-
model consists of a business model, an architecture model and a plat-
form-specific model produced according to the xx-methodology and
the yy-reference-model.

In the example of Figure 1, the domain reference-model includes
UML-profiles, patterns and existing models at all model levels (busi-
ness, architecture and platform-specific). This is not required. How-
ever, the tailoring framework requires that the constituents of the
domain reference-model should be structured according to the model
architecture of the chosen methodology.

Multiplicity relationships are not shown in the figure. The tailor-
ing framework is generic and might be used to customise all UML-
based, model-driven methodologies (including UP, RUP, Select-Per-
spective, BOM and TeMOD). In principle, an infinite set of domain
reference-models supporting a specific domain or product-family might
be developed as customisations of a particular methodology (thus, a
one-to-many relationship between methodology and reference-model).
There are also one-to-many relationships between methodology and
concrete model as well as between domain reference-model and con-
crete model.

It is also plausible to use the tailoring framework to extend or
specialise a specific domain reference-model for instance to support a
sub-domain.

UML-Profiles
The framework prescribes the common techniques for defining

UML-profiles, using the UML extension mechanisms, stereotypes and
tagged values, both of which extend the concepts we can work with in
the UML world. Using the UML extension mechanisms implies that
the developed models still conform to the UML standard.

<<concrete model>>
zz-model

+Business model
+Architecture model

+Platform specific model

Profile maker

uses

Uses/feedback to the
domain specific
reference model

Uses prescribed
models and process

Framework
defining
how to build...

Structured by
methodology

Existing models

tailoring framework

Patterns

UML profiles

Business model

<<methodology>>
xx-methodology

Architecture model

Platform specific
model

yy existing models
+Business
+Architecture
+Platform specific

<<domain reference model>>
yy-reference model

yy Patterns
+Business
+Architecture
+Platform specific

yy UML profiles
+Business
+Architecture
+Platform specific

Pattern modeller

System modeller

Figure 1: Example of framework usage

The UML-profiles of the framework describe the essential con-
cepts from the domain in question. These profiles, i.e. the concepts
defined in these profiles (the stereotypes), can be used as first class
modelling concepts when defining concrete models.

Service
provider

BusinessService PervasiveService

Service
provider

Service
provider

Client Client

ServiceProvider
<<stereotype>>

Client
<<stereotype>>

yyService
<<stereotype>>

PervasiveService
<<stereotype>>

Business Service
<<stereotype>>

UML Profileyy-reference architectureOMA

Subsystem
<<metaclass >>

<<baseClass >>

<<baseClass >>

Interface
<<metaclass >><<baseClass >>

<<sterotype >>
yyEntity

<<sterotype >>
yyService 0..n0..n

+provides

0..n

+provided_by

0..n

<<BusinessService >>
ICompInfo

<<BusinessService >>
IRegistration

<<PervasiveService >>
INaming

<<BusinessService >>
IAthleteAndClub

Concrete Architecture Model

Planning
<<Client>>

AthleteAndClub
<<ServiceProvider >>

CompetitionInfo
<<ServiceProvider >>

Naming
<<ServiceProvider >>

Registration
<<Client>>

BusinessService Class
<<metaclass >>

<<baseClass >>

Figure 2: Reference architecture, UML-profile and usage example

The framework suggests to build a profile defining the reference-
architecture used within the domain or product-family. Such a profile
will give essential support when modelling concrete system architec-
tures. Figure 2 shows an example of defining the reference-architec-
ture for the yy-domain by a UML-profile. The architecture model
prescribed by the general-purpose methodology is then customised to
support the reference-architecture of the domain or product-family.
The figure shows the yy-reference-architecture for the yy-domain or
the yy-product-family. This reference-architecture is similar in nature
to a standard bus-architecture like the OMA[9](Object Management
Architecture defined by OMG (Object Management Group, http://
www.omg.org). The UML-profile extends the UML with the appropri-
ate architectural concepts, which then become employed as first class
modelling concepts in the concrete architecture model as shown in
Figure 2.

Detailing of the UML-profile might
be done in a tabular form as shown below
(for the yyService and the yyEntity) (Table
1).

Similarly, UML-profiles might be
made for all the model levels defined by
the chosen methodology. E.g. for the xx-
methodology indicated in Figure 1 we might
have domain profiles for the business, ar-
chitecture and platform-specific level de-
fining the vocabulary to be used for mod-
elling each of these levels respectively.

An example of a business level pro-
file for a specific domain concerning busi-
ness negotiation is shown in Table 2.

An example of a platform-specific
profile is the standardised UML-profile for
EJB.

Patterns
Patterns represent special kinds of

existing models that describe a recurring
problem and suggest a general solution to
that problem. The tailoring framework is

744 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Stereotype Metamodel base TaggedValues Description Constraints
yyService Interface Transactional

network-
accessible

A service access
interface, corresponds
to a yyservice from the
architecture profile.

self.allOppositeAssociationEnds ->
forAll (a | a.type.oclIsTypeOf
(yyService) or
a.type.oclIsTypeOf (yyEntity))

yyEntity Class Persistent Represents
information provided
through an yyservice.

self.allOppositeAssociationEnds ->
 forAll(a |
a.type.oclIsTypeOf(yyEntity))

Table 1: Detailing of the UML-profile

Stereotype Metamodel base TaggedValues Description Constraints
Service owner Actor X The legal owner of a

Fleksit service
x

Service customer Actor X The legal user/buyer of
a Fleksit service

x

Service contract Document Classification The contract established
between a service owner
and a service customer

x

Business
agreement

Document Classification The high-level business
agreement between the
business parties.

x

Service Level
Agreement

Document X The service level
agreement

x

Service UseCase X The service in question x

Table 2: Business level profile example

used to define patterns and categorise them
according the actual model architecture of
the chosen methodology. For the xx-meth-
odology in Figure 1 there might be business
model patterns, architecture model pat-
terns and platform-specific model patterns.
A pattern is employed by instantiating it
(as a template) into a concrete model, the
concrete model defines who/what is fulfill-
ing the responsibilities defined by the roles
in the pattern

The tailoring framework includes a
framework for pattern definition and use.
This pattern framework includes both some
special notation (defined in an UML-pro-
file) and a template for pattern description.

The pattern structure technique of
UML collaboration is used as basis to de-
fine the pattern. The pattern structure tech-
nique is used for viewing the collaboration
as a single entity from the outside. The
collaboration details are further defined
using UML activity diagram or UML se-
quence diagram. A simple example describ-
ing a pattern for a naming service and the
usage of the pattern is shown in Figure 3.

A UML collaboration describes the
collaboration of roles. A role is a place-
holder for a set of objects that can fulfil
the responsibilities of that role. Roles can
be specified in two ways in UML; instance
level and specification level. Instance level
role collaborations are described in terms
of collaboration diagrams with objects,
links, and message stimuli. Specification-
level collaborations are described by
ClassifiersRoles and AssociationRoles.

UML has defined a naming conven-
tion denoting roles, which allows a simple

way of indicating a role. The general syn-
tax is

ObjectName �/� ClassifierRoleName
�:� ClassifierName [�,� ClassifierName]*

This convention can be used on both
instance-level and specification-level col-
laborations.

A collaboration can be considered a
set of roles collaborating to fulfil a mis-
sion, defined by the unified responsibili-
ties of the roles in the collaboration. Col-
laborations as a concept has been proven
useful in several recognised methodology
approaches; Catalysis[3] uses collabora-
tions and collaboration refinements for
analysis, design and reuse purposes.
OOram[5] uses role models to describe
collaborations of roles, and synthesis to
refine and reuse existing models. Lately,
also the UML community embraces this
view of collaborations.

The top left of Figure 3 show the
pattern structure in terms of roles col-
laborating to fulfil a mission defined by
the unified responsibilities of the roles in
the collaboration. The naming pattern
defined includes three roles: Name Binder,
Name Client and Naming Handler.

/ NameClient / NameBinder

Naming
(from Use Case View)

<< pattern >>

/NamingHandler

Naming << collaboration >> lookup service
by name bind name

to service

 : / NameBinder : / NameHandler : / NameClient

bind(" servicename ", "service")
updateRegistry

{Service}
{ Failed to register}

rebind (" servicename ", "service")
updateRegistry

{Service}
{ Failed to register}

lookup (" servicename ")

searchRegistry
{Service}

{ !ServiceNotRegisteredException }

CustomerSearcher
r CustomerSearchClient

CustomerHandling

search for a
customer obtain

customer
info

Naming << collaboration >>
(from Naming)

/ NameBinder
<<bind>>

/ NameClient
<<bind>>

CustomerProvider
edit/ add
customer

/ NameClient

<<bind>>

CustomerSearche
r : / NameBinder

INameService :
/ NameHandler

CustomerProvider
: / NameClient

CustomerSearchClient
: / NameClient

rebind (" customerSearch ", CS)
updateRegistry

lookup (" customerSearch ")

lookup (" customerSearch ")

Pattern description in UML

Pattern usage

Figure 3: Pattern description and usage

Issues and Trends of IT Management in Contemporary Organizations 745

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

A collaboration is modelled as a use-case stereotyped with <<col-
laboration>>. The roles are modelled as UML actors with role-names.
These roles can either be external or internal to the pattern. It is the
external roles that are parameterised when the pattern is used. The
worker stereotype defined in RUP is used to denote internal actors.
The Naming Handler is an internal role in the example. The semantics
of the collaboration �use case� is the same as a UML collaboration
pattern structure (a use-case realisation).

The sequence diagram of the top right defines the behaviour of
the pattern by specifying interactions between roles. Certain conven-
tions for describing behaviour in a UML sequence diagram are defined
when describing a pattern using the framework:
� Messages sent to a role are described in standard UML manner. These

may or may not be messages that exist as a part of that role�s
protocol. Using �//� as prefix for a method denotes that this method
is not explicitly located in the interface, i.e. it may be an analysis
operation only, or a reference to existing pattern behaviour.

� Return values are always specified explicitly, with a special message
sending convention, the message name is the value of the return and
it is packed in curly braces, like this {IObjectType}.

� Errors or exceptions are specified to the extent considered neces-
sary. The convention is the same as for method returns, except for
an exclamation mark (!) indicating the nature of an exception, like
this {!IOException}.

In order to use a pattern, the desired external roles of the pattern
must be instantiated. This is done by using a specialised �binding�
relationships from the pattern collaboration source to the roles that
instantiate the designated roles of the pattern. The role parameters
are bound by the role-name specified on the binding relation, e.g. �/
NameClient�. The lower left of Figure 3 shows how a pattern can be
instantiated by binding the roles from the pattern. There are no limits
as to how many roles can be bound to another role or actor.

The sequence diagram at the lower right shows an example of
synthesising the pattern onto a specific architecture.

The framework provides a template for pattern description as
shown below.

Name
Names the pattern after the solution it proposes.

Problem description
Provides a thumbnail description of the problem the pattern is solv-
ing.

Parameterised structure
The roles participating in the collaboration and the collaboration
symbol (the use-case view) (UML use-case diagram)

Behaviour
The behavioural details of the collaboration (UML activity/sequence
diagram)

Example
Provide an example of use

Existing Models
Existing models represents already defined concrete models that

can be reused by package import and referencing. In the same way as
for the UML-profiles and patterns the tailoring framework prescribes
that the existing models should be categorised and structured according
to the model architecture of the chosen general-purpose methodology.
Typical usage of an existing model is to reuse for example an existing
interface by inheritance or reference.

An existing model is reused in terms of package import, where
the namespace defined by the package becomes available. All public
artefacts (use cases, actors, interfaces, classes, etc.) becomes available
to the importing package. Alternatively, elements from an existing

model can be used simply by scoped naming (UML pathnames), e.g.
nnCore::PervasiveServices::NamingService::INaming, which refers to
the INaming interface contained in the package structure implied.

The general mechanism for reuse of a model, being it a pattern or
a standard model, is by import of the package that defines the model.
This makes the model elements defined in that package available (by
model elements, meaning interfaces, classes, etc.). In principle, we can
then reference interfaces, etc. from that package.

Package import is straightforward in UML, done with the <<im-
port>> dependency stereotype between packages.

CONCLUSIONS
In this paper we have described a generic framework for

customising general-purpose methodologies for the purpose of pro-
viding better support to specific needs within a domain or product-
family. An important aspect of this has been to ensure utilisation of
the existing knowledge possessed within the actual domain.

The tailoring framework introduce need for new roles responsible
for developing and maintaining reference-models. The developers must
also learn to use the actual reference-model appropriately. Thus, suc-
cessful introduction of the tailoring framework requires a well-defined
process and careful consideration of the relevant risks.

The framework has already been used within the Telenor group
and we have seen several benefits from its application. It assists in:
� Establishing and maintaining models representing knowledge pos-

sessed within the domain.
� Model reuse: The reference-model advocates model level reuse le-

veraging existing models and patterns describing best practice for
solving recurring problems within the domain. Current tool support
is rather immature, so there are still potential for gaining substantial
improvement of the efficiency of the model development with suf-
ficient tool support.

� Reuse at the right level: It has proven that efficient reuse is easier to
gain within a product-family community or a fairly small scoped
domain as opposed to general-purpose reuse in widely scoped do-
mains. It is then easier to build a reusable asset library within the
reach of the users. The reuse task is also more straightforward (does
not imply a lot of tailoring).

� Ensuring consistency of a set of models: Customising a general-
purpose methodology with stereotypes, common domain-models,
or common patterns will help making the models more consistent.

� Standardisation: The reference-model functions as the �standard�
for the specific domain, without contradicting the prescriptions of
the general-purpose methodology which function as the standard for
a set of domains (e.g. the enterprise as a whole).

� Adding more semantics to the models: The use of stereotypes and
the description of patterns can help making the models more power-
ful and expressive for the readers and the modellers.

� Preparing for code generation: Code generation can be made more
powerful when defining reference-models and utilise the defined UML-
profiles, patterns and existing models. This might be stereotyping a
certain kind of interfaces, data types or other aspects that can help
the code-generator doing sophisticated code generation. This re-
quires a customised code generator, which introduces overhead and
administration in some aspects of development, but might substan-
tially increase efficiency of development and also make the system
development less error-prone.

Another interesting aspect we have experienced is that the tai-
loring framework might be used as a vehicle for successful introduction
of a common general-purpose methodology within an enterprise. Since
the customisations makes the general-purpose methodology more ap-
propriate for the different domains within the enterprise it is more
acceptable for the different groups of system developers (users). The
users are typically also involved in the customisation gaining a feeling
of ownership to the introduced methodology

In the future, we plan to work further with the tailoring frame-
work in co-operation with Telenor and EDB4Tel. We�ll follow up the

746 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

usage of the framework within those companies and investigate the
experiences attained. General aspects of the framework as well as tool
support will be main foci in the COMBINE[13] project and the DAIM
project[15]. We�ll also work further with the framework as part of the
CAFÉ[16] project.

REFERENCES
[1] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Soft-

ware Development Process, Addison-Wesley 1999.
[2] 1996, ISBN 0134529308 Rational: The Rational Development pro-

cess
[3] Catalysis, Desmond D�Souza, Alan C. Wills, �The Catalsysis Ap-

proach�, ISBN 0-201-31012-0, www.catalysis.org
[4] Paul Allen, Stuart Frost, Component-Based Development for Enter-

prise Systems, Applying the SELECT Perspective, SIGS Book and
Multimedia 1998

[5] OOram, Reenskaug, Wold, Lehne: Working With Objects. The OOram
Software Engineering Method, Manning/Prentice Hall 1996. ISBN
0-13-452930-8

[6] Ian Graham, Brian Henderson-Sellers, Houman Younessi: The OPEN
Process Specification 1997, Addison Wesley, , ISBN 0-201-33133-0

[7] Arnor Solberg, Arne Jørgen Berre. The Business Object Methodol-
ogy, Deliverable of the OBOE[12] project

[8] Arnor Solberg, Jon Oldevik. Telenor Methodology for Interface
Modelling with UML, version 3.02, August 2001

[9] OMG�s Model Driven Architecture: http://www.omg.org/mda (MDA
is a trademark of OMG)Specification 1997, Addison Wesley, , ISBN
0-201-33133-0

[10] Svein O Hallsteinsen, Geir Skyllstad, Arnor Solberg, Tor Neple,
Arne Jørgen Berre. The Magma software engineering handbook, ver
1.0 2000, Magma - A technology development project initiated by
PROFF; The Software Industry Association of Norway

[11] OMG EDOC profile � UML-profile for enterprise distributed ob-
ject computing, http://www.omg.org/techprocess/meetings/schedule/
UML_Profile_for_EDOC_RFP.html

[12] OBOE - Open Business Object Environment (OBOE). Esprit IV
project 23233, http://www.opengroup.org/public/oboe/Home.html

[13] COMBINE � COMponent-Based INteroperable Enterprise system
development, ESPRIT V project IST-1999-20893,

[14] MAGMA: http://www.ikt-norge.no, > Prosjekter > MAGMA
(Web pages in Norwegian, but the MAGMA Software Engineering
Handbook in English can be downloaded)

[15] DAIM � Distributed Architecture, Internet, and Multimedia, a
research project sponsored by the Norwegian Research Council.

[16] CAFÉ � from Concept to Application in system-Family Engineer-
ing http://www.extra.research.philips.com/euprojects/cafe/

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/generic-framework-defining-domain-

specific/31893

Related Content

Twitter Intention Classification Using Bayes Approach for Cricket Test Match Played Between

India and South Africa 2015
Varsha D. Jadhavand Sachin N. Deshmukh (2017). International Journal of Rough Sets and Data Analysis

(pp. 49-62).

www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-

between-india-and-south-africa-2015/178162

Competitive Intelligence from Social Media, Web 2.0, and the Internet
Sérgio Maravilhas (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 558-

566).

www.irma-international.org/chapter/competitive-intelligence-from-social-media-web-20-and-the-internet/112369

Formal Specification Language for Agent Oriented Systems
Vinitha Hannah Subburajand Joseph E. Urban (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 4107-4116).

www.irma-international.org/chapter/formal-specification-language-for-agent-oriented-systems/112853

Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning
Xiaoan Qin (2023). International Journal of Information Technologies and Systems Approach (pp. 1-20).

www.irma-international.org/article/research-on-big-data-driven-urban-traffic-flow-prediction-based-on-deep-

learning/323455

Application of Cognitive Map in Knowledge Management
Akbar Esfahanipourand Ali Reza Montazemi (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 1112-1122).

www.irma-international.org/chapter/application-of-cognitive-map-in-knowledge-management/112507

http://www.igi-global.com/proceeding-paper/generic-framework-defining-domain-specific/31893
http://www.igi-global.com/proceeding-paper/generic-framework-defining-domain-specific/31893
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162
http://www.irma-international.org/chapter/competitive-intelligence-from-social-media-web-20-and-the-internet/112369
http://www.irma-international.org/chapter/formal-specification-language-for-agent-oriented-systems/112853
http://www.irma-international.org/article/research-on-big-data-driven-urban-traffic-flow-prediction-based-on-deep-learning/323455
http://www.irma-international.org/article/research-on-big-data-driven-urban-traffic-flow-prediction-based-on-deep-learning/323455
http://www.irma-international.org/chapter/application-of-cognitive-map-in-knowledge-management/112507

