
Issues and Trends of IT Management in Contemporary Organizations 843

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
An interaction diagram is a graphical view of computation processes and communication between different entities. It can be used for the
design and testing of distributed systems. In particular, interaction diagrams offer significant advantages to the design of multi-agent
systems, especially when they can be expressed in a linear form, known as fragmentation, facilitating automation of design and testing
of such systems. Existing interaction diagram formalisms lack the capability of describing flexible temporal order constraints. They only
support rigid temporal order, and hence have limited semantic expressiveness. In this paper, we propose an improved interaction
diagram formalism in which more flexible temporal constraints can be expressed.

Temporal Interaction Diagrams
T. Y. Chen

School of Information Technology, Swinburne University of Technology, Australia
Tel: +6 (139) 214-5505, Fax: +6 (139) 819-0823, tychen@it.swin.edu.au

Iyad Rahwan
Department of Information Systems, University of Melbourne, Australia

Tel: +6 (138) 344-9236, Fax: +6 (139) 349-4596, i.rahwan@pgrad.unimelb.edu.au

Yun Yang
School of Information Technology, Swinburne University of Technology, Australia

Tel: +6 (139) 214-5505, Fax: +6 (139) 819-0823, yun@it.swin.edu.au

INTRODUCTION
Agent-based computing promises to allow software developers to

naturally understand, model, and develop complex distributed systems
[2][8]. The following definition is adapted from [7]: �an agent is a
software system (or system component) that is situated in an environ-
ment, which it can perceive, and that is capable of autonomous action
in this environment in order to meet its design objectives.� Jennings
and Wooldridge [3] proposed that an intelligent agent is capable of
social behaviour; that is, capable of communicating with other agents
in the system. In this context, there is a need for formalising such
interaction in multi-agent systems. Such formalisation would be useful
for designing and testing multi-agent systems, as well as visualising the
computation flow of each agent and communication among agents.

Various attempts have been made to formalize interaction in
multi-agent systems (e.g. [1][4][6]). Usually the system design stage
involves a description of the steps taken in processing a particular
task. In multi-agent systems, however, the implementation requires a
clear picture of the separate computational threads of different agents.
In concurrent agent systems, it would be very helpful to be able to
express the computation flow descriptions for different agents. Inter-
action diagrams are used which are easily expressed and understood by
system designers. The linear representation of these diagrams facili-
tates the automation of the processes of diagram manipulation for
design, report generation and testing. In particular, testing can be
performed by comparing agent execution traces against specifications
expressed in terms of interaction diagrams.

However, existing interaction diagram formalisms support quite
rigid temporal order constraints only. If the execution trace does not
exactly match the specified order, it is considered unacceptable. In
other words, there is no way of specifying multiple acceptable traces
without writing multiple versions of fixed execution traces. This can
become a difficult job, especially in multi-agent systems with high
interaction rates. In such systems, the number of acceptable interac-
tions can be quite large and there is a need to more concisely express
such flexibility in a single interaction diagram. Our research is a step
towards achieving this goal.

In the next section, we give a brief description of interaction
diagrams as proposed in [6], and we outline their drawbacks. Then, we
describe how to add more flexible temporal characteristics to existing
interaction diagram formalisms in section 3. We then show some
examples to demonstrate its expressive power. Finally, a number of
conclusions are drawn and future research is outlined.

EXISTING INTERACTION DIAGRAMS
An interaction diagram is a graphical representation of the com-

putation threads and communications in a multi-agent system and the
like. It is a graph showing the process of each agent symbolically as
one or more vertical bars, and the messaging between agents as hori-
zontal arrows between these bars [6]. A sample interaction diagram is
shown in Figure 1, describing three agents A, B and C and the message
sequences among them. There are a number of properties that are
worth mentioning with respect to the meaning of this interaction
diagram according to the formalism in [6].

A fragmentation is an algebraic representation of an interaction
diagram. In order to convert an interaction diagram into a fragmenta-
tion, we need to decompose it into its graphical elements, which cor-
respond to fragments. A number of graphical elements have been
proposed in [6]. Figure 2 shows some types of those fragments. These
fragments correspond to the beginning of an agent thread, the end of
an agent thread, an agent sending a message, and an agent receiving a
message. Underneath every fragment is its corresponding algebraic
form. A combination of those algebraic atoms can be combined (form-
ing a fragmentation) to describe a particular interaction diagram.

There are a number of different types of fragmentation, namely
with respect to the order in which the fragments in the diagram are
stated in the algebraic form. We are mainly concerned with computa-
tion flow fragmentation [6], which orders the fragments by grouping
those of the same agent together. Each agent�s fragments are ordered
according to a top-to-bottom sequence (or temporal sequence). This
represents the computation flow of an agent. The order of fragments
in a fragmentation is significant as it reflects the temporal order [5].
The computation flow fragmentation for Figure 1 is as follows.

For agent A: <beg(A), snd(A,m1), rcv(A,m4), end(A)>
For agent B: <beg(B), rcv(B,m1), snd(B,m2), rcv(B,m3), snd(B,m4), end(B)>
For agent C: <beg(C), rcv(C,m2), snd(C,m3), end(C)>

According to [6], when actions concern a single agent, the order
of actions has significance for the interpretation of the diagram. The
meaning of a single agent computation flow is that the order in which
the fragments occur reflects the order in which the corresponding
actions take place. In other words, they state the exact temporal
order in which the fragments or messages should take place. There is
no flexibility in expressing other temporal constraints between differ-
ent fragments. This is a severe drawback to the expressive power of

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4319
IDEA GROUP PUBLISHING

844 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

A B C

m1

m2

m3

m4

A B C

Figure 1: Simple interaction diagram

A

beg(A) end(A)

m

snd(A,m)

m

rcv(A,m)

Figure 2: Graphical elements (fragments)

the framework. What we would like to achieve is a formal framework
for supporting more flexibility in the temporal constraints.

In order to explain the drawback more clearly, we will give a
simple example of one agent. Suppose we would like to express the
following temporal order constraints on the events of the diagram in
Figure 3, where an event is e.g. snd or rcv, etc. (for clarity purposes, we
have omitted stating what these events really are because for our
purpose, the other agents are not important).

We will give an example from a coffee making machine agent.
Suppose an agent needs to perform the following tasks:
� First, send a message to the resources agent requesting sugar and

coffee (call this event a1).
� Then, receive a message from the resources agent stating sugar is

ready (call this event a2). Also receive another message from the
resources agent stating coffee is ready (call this event a3). It does not
matter which of these happens first, but they both need to be com-
pleted before moving to the next step.

� Now, send a message to the water agent requesting hot water to be
poured in the cup (call this event a4).

a1

a2

a3

a4

Figure 3: Single agent

More abstractly, we have the following constraints:
� a1 must be before a2, a3 and a4
� the order of a2 and a3 is not important
� a4 must take place after both a2 and a3.

In fact, we can see the problem as follows. In a multi-agent
system design and communication specification stage, instead of speci-
fying a single valid execution sequence that must be followed, we might
like to specify a number of valid sequences. Recall that interaction
diagrams can be used for checking agent execution traces against speci-
fied order constraints. In the example above, the designer�s intention
is to consider both the event sequence a1, a2, a3, a4 and the event
sequence a1, a3, a2, a4 as valid. Using the old formalism, we need to
provide two different (rigid) interaction diagrams. If the execution
trace satisfies one of these diagrams, then the trace is correct. This
technique becomes less practical in more complex settings where the
number of possible acceptable sequences of events is large (eg. in
multi-agent settings with complex interaction protocols). In such a
situation, a separate interaction diagram needs to be provided for each
valid sequence, and checking needs to be carried out against all interac-
tion diagrams until one (or none) matches. In the next section, we
present an extension to the existing framework which supports flex-
ible constraints to be expressed in an interaction diagram.

PROPOSED ENHANCEMENT
In this section, we propose the enhancement of the current inter-

action diagram formalism as follows. We would like to distinguish
between two types of temporal order constraints; namely, groups of
events among which the order is important, and groups of events
among which the order is not important.

We will append the set of graphical elements with the fragments
shown in Figure 4. A couple of fragments, corresponding to the �<� and
�>� symbols (we will call them angular brackets), represent the start
and end of a group of fragments among which the top-to-bottom order
is the actual temporal order (i.e. as in the original formalism). This
temporal order also states that, in addition to the specified temporal
order, no external event is allowed to interleave within those events.
The other couple of fragments, corresponding to the �[� and �]� sym-
bols (we call them square brackets), represent the start and end of a
group of fragments among which the top-to-bottom order does not
necessarily reflect the actual temporal order. Throughout the paper,
we will use the term �bracket� to refer to all types of brackets.

No significance for
temporal order

[] < >

Significance for
temporal order

Figure 4: Ordering fragments

A sample interaction diagram using some of the proposed frag-
ments is shown in Figure 5. This interaction diagram expresses the
temporal constraints mentioned in the previous section, which the
previous formalism failed to express. Simply, the group inside the
square bracket-shaped fragments have no specific temporal order.
However, event a1 must precede this group, and a4 must take place
after it. The following is the corresponding modified computation

Issues and Trends of IT Management in Contemporary Organizations 845

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

a2

a3

a4

a1

Figure 5: Single agent diagram appended with proposed symbols

flow fragmentation. (Note that a1, a2, etc, are placeholders for nor-
mal fragments such as snd and rcv).

Note that this fragmentation is semantically equivalent to the
following fragmentation, that is changing the order of events inside
the square brackets does not affect the meaning of the diagram:

These fragmentations have the following properties:
1. An opening fragment of a particular type should appear before any

closing fragment of that type.
2. At any stage of parsing the fragmentation, the number of opening

fragments must be greater than or equal to the number of corre-
sponding closing fragments of the same type.

3. At the end of the interaction diagram (or the corresponding frag-
mentation), the number of opening and closing fragments should be
equal (i.e. each opening fragment should have a corresponding clos-
ing fragment).

4. No two groups overlap, i.e. if a bracket of group g1 opens, and within
that a bracket of group g2 opens, the closing bracket of group g2
must close before the closing bracket of group g1 does. That is each
bracket is matched with the nearest corresponding bracket.

5. An entity is either an atomic event, a group of events enclosed within
a matched pair of brackets, or a group of entities enclosed within a
matched pair of brackets. All entities are treated the same with
respect to the higher-level group they belong to.

6. The temporal relation between any two events is determined by the
type of the nearest complete pair of brackets (angular or square)
which contains them.

EXAMPLE AND OBSERVATIONS
In this section, we show another example to further illustrate our

notation. We will exploit the multi-agent-based supply chain automa-
tion domain. This domain is a typical example of situations in which
there is a need for flexible specification of multi-agent interactions.
Suppose we have four agents:
� Agent A: Representative of a personal computer (PC) manufactur-

ing company. This company does not manufacture all computer
parts, but rather purchases them from known partners (shown be-
low). There are partners from which this agent purchases
motherboards, hard disks, and computer cases.

� Agents B, C, and D: Representatives of manufacturers for PC
motherboard, hard disks, and computer cases, respectively.

Figure 6 shows the interactions between the different agents, with
the meaning of different messages passed between them. Note that
since the default case is �order is important�, there is no need to
include angular brackets at the beginning and the end. The meaning of
the diagram with respect to agent A is that the process of ordering
motherboards and the process of ordering hard disks can take place in
any order. However, ordering the PC cases should take place after the

m1

m3

m4

m2

A B C D

m5

m6

Agents:
A: PC manufacturer agent
B: Motherboard manufacturer
agent
C: Hard disk manufacturer
agent
D: PC case manufacturer
agent
Messages:
m1: request motherboard delivery
m2: confirm motherboard delivery
m3: request hard disk delivery
m4: confirm hard disk delivery
m5: request computer case delivery

6 fi t d li

Figure 6: PC manufacturing multi-agent example with flexible order
constraints

Agents:
A: PC manufacturer agent
B: Motherboard manufacturer agent
C: Hard disk manufacturer agent
D: PC case manufacturer agent

Messages:
m1: request motherboard delivery
m2: confirm motherboard delivery
m3: request hard disk delivery
m4: confirm hard disk delivery
m5: request computer case delivery
m6: confirm comupter case delivery

completion of both these processes (suppose there is no point storing
computer cases for long periods of time until the other components
arrive).

The computation flow fragmentation of the multi-agent system
in Figure 6 is as follows:
� For agent A: <beg(A), [<snd(A,m1), rcv(A,m2)>, <snd(A,m3),

rcv(A,m4)>], snd(A,m5), rcv(A,m6), end(A)>
� For agent B: <beg(B), rcv(B,m1), snd(B,m2), end(B)>
� For agent C: <beg(C), rcv(C,m3), snd(C,m4), end(C)>
� For agent D: <beg(D), rcv(C,m5), snd(C,m6), end(C)>

Note, however, that in the above fragmentation, the process of
ordering motherboards must completely finish (i.e. the request as well
the reply must both take place), before the process of ordering hard
disks starts. This seems unnatural. One alternative approach is to
replace the notation �[<snd(A,m1), rcv(A,m2)>, <snd(A,m3),
rcv(A,m4)>] � with the following �< [snd(A,m1), snd(A,m3)],
[rcv(A,m2), rcv(A,m4)] > �, which means that sending out the first
two orders can happen in any order, and receiving the corresponding
responses may also happen in any order, with the only condition being
that both orders should be sent out before any order gets received.
In reality, on the other hand, we might want to express that they
can both happen in any order as long as no reply occurs before a
request without disallowing a response to be received before the
second order is sent. This is one of the limitations of our formal-
ism. This limitation is due to the fact that we do not allow inter-
leaving between events belonging to different bracket pairs. We
treat all events within a bracket pair as a single entity with respect
to all other events outside that pair.

CONCLUSIONS
Existing interaction diagram formalisms and their corresponding

linear notations (known as fragmentations) require a number of strict
interaction diagrams to be written in order to allow for different ex-
ecution sequences. This is because each interaction diagram is capable
of expressing a single, strict valid execution sequence. In this paper, we
have presented a formalism for describing flexible interaction dia-
grams which are able to express many possible execution sequences
using one interaction diagram. Our formalism describes interaction
diagrams which have a mix of two types of temporal relationships
between events belonging to a single agent, namely ordered and unor-
dered temporal relationships. An ordered temporal relationship means
that events should take place in the order specified. An unordered
temporal relationship states that the order of executing two events is
not important. We have showed how combinations of these two types

846 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

of relationships could be used to represent more complicated scenarios
through a linear fragmentation.

Future studies will include further extending our framework to
accommodate more complex temporal relationships such as condi-
tional temporal ordering and interleaving events.

ACKNOWLEDGEMENT
Part of this work was done when the second author was at Swinburne

University of Technology. The second author would also like to thank
Khaled Anton Kattan for valuable discussions and implementations
surrounding an earlier version of this paper.

REFERENCES
1. B. Bauer. Extending UML for the Specification of Agent Interaction

Protocols, OMG document ad/99-12-03, FIPA submission to the
OMG�s Analysis and Design Task Force (ADTF) in response to the
Request of Information (RFI) entitled �UML2.0 RFI�, December
1999.

2. N. R. Jennings. An Agent-based Approach for Building Complex
Software Systems. Communications of the ACM, 44(4):35-41, 2001.

3. N. R. Jennings, M. Wooldridge. Applications of Intelligent Agents.
In: N.R. Jennings and M. Wooldridge (eds.): Agent Technology:
Foundations, Applications, and Markets, pages 3-28, 1998.

4. D. Kinny. The AGENTIS Agent Interaction Model. In Proceedings
of the 5th International Workshop on Agent Theories, Architec-
tures, and Languages (ATAL-98), Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, Heidelberg, 1999.

5. C. K. Low, R. Ronnquist and T. Y. Chen. An Automated Tool (IDAF)
to Manipulate Interaction Diagrams and Fragmentations for Multi-
Agent Systems. International Journal of Software Engineering and
Knowledge Engineering, 9(1):127-149, 1997.

6. R. Ronnquist and C. K Low. Formalisation of Interaction Diagrams.
In Proceedings of the 3rd Asia-Pacific Software Engineering Confer-
ence, Seoul, Korea, IEEE Computer Society Press, pages 318�327,
Dec. 1996.

7. M. Wooldridge. Intelligent Agents. In: Grehard Weiss (ed.): Multiagent
Systems. MIT Press, April 1999.

8. M. Wooldridge, N. R. Jennings and D. Kinny. The Gaia Methodology
for Agent-Oriented Analysis and Design, Journal of Autonomous
Agents and Multi-Agent Systems 3:285-312, 2000.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/temporal-interaction-diagrams/31919

Related Content

Getting the Best out of People in Small Software Companies: ISO/IEC 29110 and ISO 10018

Standards
Mary-Luz Sanchez-Gordon (2017). International Journal of Information Technologies and Systems

Approach (pp. 45-60).

www.irma-international.org/article/getting-the-best-out-of-people-in-small-software-companies/169767

The Other Side of “Big Brother”: CCTV Surveillance and Intelligence Gathering by Private Police
David Aspland (2013). Cases on Emerging Information Technology Research and Applications (pp. 131-

150).

www.irma-international.org/chapter/other-side-big-brother/75858

Adaptive Computation Paradigm in Knowledge Representation: Traditional and Emerging

Applications
Marina L. Gavrilova (2009). Utilizing Information Technology Systems Across Disciplines: Advancements in

the Application of Computer Science (pp. 301-314).

www.irma-international.org/chapter/adaptive-computation-paradigm-knowledge-representation/30732

An Empirical Study on Software Fault Prediction Using Product and Process Metrics
Raed Shatnawiand Alok Mishra (2021). International Journal of Information Technologies and Systems

Approach (pp. 62-78).

www.irma-international.org/article/an-empirical-study-on-software-fault-prediction-using-product-and-process-

metrics/272759

Social Network Anonymization Techniques
 (2018). Security, Privacy, and Anonymization in Social Networks: Emerging Research and Opportunities

(pp. 36-50).

www.irma-international.org/chapter/social-network-anonymization-techniques/198294

http://www.igi-global.com/proceeding-paper/temporal-interaction-diagrams/31919
http://www.irma-international.org/article/getting-the-best-out-of-people-in-small-software-companies/169767
http://www.irma-international.org/chapter/other-side-big-brother/75858
http://www.irma-international.org/chapter/adaptive-computation-paradigm-knowledge-representation/30732
http://www.irma-international.org/article/an-empirical-study-on-software-fault-prediction-using-product-and-process-metrics/272759
http://www.irma-international.org/article/an-empirical-study-on-software-fault-prediction-using-product-and-process-metrics/272759
http://www.irma-international.org/chapter/social-network-anonymization-techniques/198294

