
512 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Many object-oriented software developers are faced with the dilemma of
utilizing a relational database for their persistent data store. The phrase
“impedance mismatch” is often used to characterize the difficulties in
sharing data between the relational and object-oriented models. By
harnessing the power of modern Relational Database Management Systems
(RDBMS), an easy-to-implement, easy-to-use, persistent storage solution
for Java that does not compromise the data integrity of either model will
be illustrated. The technologies used in this paper are Java and Oracle.

INTRODUCTION
Impedance mismatch arises from the inherent lack of affinity be-

tween the object and relational models. Problems associated with the
impedance mismatch include class hierarchies binding to relational
schemas (InterSystems Cache, 2002)

Why does the impedance mismatch exist? Object-Oriented Data-
base Management Systems (OODBMS) have been around for several
years and are now quite mature – yet they have failed to expand beyond
a niche market. (Leavitt, 2000) Several theories have been proposed to
explain this phenomenon and are beyond the scope of this paper. This
is an acknowledged fact that forces object-oriented (OO) developers to
store persistent data objects in a relational structure. A basic understand-
ing of Relational Theory, OO theory and RDBMS implementation is
assumed.

To overcome the impedance mismatch, some associations between
the relational model and the OO model should be mentioned. As seen in
Table 1, there are many similarities between the models, which can be
exploited. For the OO model, there are classes (abstract and concrete),
inheritance hierarchies, interfaces, and instances of classes. In the
Relational model, there are entities and relationships. In the relational
model, tables, constraints (including keys) and data exist.

For this paper, the focus will be on a basic, single inheritance, OO
structures. Advanced structures such as multi-inheritance and wholly
contained object lists will be addressed in a later article. A modern
RDBMS, such as those developed by Oracle, IBM, MS and others is
required for implementing this technique. Additional mappings, such as
class methods to stored modules exist, are also beyond the scope of this
work.

One of the problems demonstrated in the above table is that there
is only a single construct in the relational and RDBMS paradigm for two
concepts in the OO paradigm. This, the authors believe, is the heart of
the impedance mismatch. While the OO developers develop abstract
and concrete classes to solve specific application problems, the concept
of a structure that contains no data does not exist in the relational
world.

The techniques used for our examples will be written in Java and
the RDBMS will be Oracle. Both technologies were chosen for their
popularity in the marketplace. In order to minimize the impact of
changes in either the database table structures or the java class codes,
developers should have (where possible) a single point of entry (class
method) to get a single item stored in the database. It is assumed that
object ID’s are not required to be consistent across application runs.
The addition of object ID’s (as surrogate keys) to the methods described
here is a trivial task and left up to the reader.

Figure 1 illustrates the basic inheritance hierarchy that has a re-
quirement for persistence of data.

APPROACH 1
An approach that is often employed when storing OO data in a

RDBMS is the creation of database table for every concrete class in the
system. This approach is labeled Approach 1a in Figure 2. The problem
with this approach is that the rules of normalization are not satisfied.
Normalization is the process, which produces an efficient data storage
structure without data duplication. While the data is stored in a fashion,
which is very close to the OO structure, changes to the database are
expensive. Altering the EMP class would require the modification of
four relational tables! The corresponding Java code is straight forward,
but suffers from the same fragility as the underlying table structures.

Basic Impedance Mismatch Problem
Resolution

Erick D. Slazinski and Michael J. Payne
Computer Information Systems and Technology Department

Purdue University 1421 Knoy Hall West Lafayette, IN 47907-1421
Tel: (765) 496-7582, Tel: (765) 494-2566
Fax: (765) 496-1212, Fax: (765) 496-1212

edslazinski@tech.purdue.edu, mjpayne@tech.purdue.edu

Table 1

OO Relational RDBMS
Abstract Class Entity Table definition
Concrete Class Entity Table Definition
Inheritance hierarchy Relationships Primary / foreign key constraints
Interface N/A Stored module
Instance N/A Data row

Figure 1

-newID : String
-newName : String

«metaclass»
Emp

-salary : double

«implementation class»
BossEmp

-baseSalary : double
-commPercent : double
-sales : double

«implementation class»
CommEmp

-hours : double
-hourlyRate : double

«implementation class»
HourlyEmp

-prodQty : unsigned int
-pieceRate : double

«implementation class»
PieceEmp

*

*

*

*

*

*

*

*

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 513

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

public boolean readBoss_Emp(String employeeID) {

Statement statement;
ResultSet resultSet;

int i = 0;

String query = “SELECT * FROM Boss_Emp where
NewID = “ + “\’” + employeeID + “\’”;
statement = connection.createStatement();
resultSet = statement.executeQuery(query);
while(resultSet.next()) {

empID = resultSet.getString(“NewID”);
empName = resultSet.getString(“NewName”);
empSalary = resultSet.getDouble(“Salaruy”);

i++;
}

}

public boolean addEmployee(String employeeID, String newName,
Double salary) {

{
Statement statement = connection.createStatement();
String query = “INSERT INTO BossEmp (“ +

“NewID, NewName, Salary” + “) VALUES (‘“ +
employeeID + “‘, ‘“ +

newName + “‘ , “ + salary + “)”;

int result = statement.executeUpdate(query);
}

A variation to Approach 1 has the development of 1 table, which contains
all columns for all of the concrete classes. This approach is labeled
Approach 1b in Figure 2. It is difficult to enforce data element requirements
(such as for a given BossEmp, you must have a salary vs. an HourlyEmp
requires hours and hourlyrate filled in). Another problem with this approach
is that there will be wasted data space due to empty data cells for each row
of data stored. Again maintenance is an issue, if another concrete class is
added to the hierarchy; additional columns must be added to the database
table. The problem extends into the Java code, not only does is the code
required containing extraneous non-values, but maintenance is overly
complex. Remember that these routines must be maintained for all
concrete classes!

public boolean readBossEmp(String employeeID) {

Statement statement;
ResultSet resultSet;
int i = 0;

String query = “SELECT * FROM Emp where NewID = “ + “\’”
+ employeeID + “\’” + “ and EmpType = “ + “\’” + “B”
+ “\’”;

statement = connection.createStatement();
resultSet = statement.executeQuery(query);
while(resultSet.next()) {

empID = resultSet.getString(“NewID”);
empName = resultSet.getString(“Name”);
empSalary = resultSet.getDouble(“Salary”);
i++;

}
resultSet.close();
statement.close();

}

public boolean addEmp(String employeeID, String newName,
Double salary) {

boolean OK = false;

String empType = “B”;
Statement statement = connection.createStatement();
String query = “INSERT INTO BossEmp (“ +

“NewID, NewName, EmpType, Salary, BaseSalary,
CommPercent, Sales, “ + “Hours, HourlyRate, ProdQty,
PieceRate)” + “VALUES (‘“ + employeeID +“‘, ‘“ +
newName + “‘, ‘“ + empType + “‘ ,” + salary + “, “ + 0
+ “, “ + 0 + “, “ + 0 + “, “ + 0 + “ ,” + 0 + “, “ + 0 + “,
“ + 0 + “)”;

int result = statement.executeUpdate(query2); }

APPROACH 2
This approach is labeled Approach 2 in Figure 2 satisfies the rules

of normalization. This structure is also very similar to the object model.
This approach is not without its challenges. The storage of data is now
spread across multiple tables – which could be seen as destroying the
cohesiveness of the data. Secondly, data is stored in the relational
manifestation of an abstract class – something that is not allowed in an
OO language! This issue is an implementation (RDBMS) dependant
issue and not something that can be addressed. In order to provide
access to the fragmented data in a manner consistent with the hierarchi-
cal model presented, database views will be used

Database views, while a terrific mechanism for retrieving data from
a database, they may encounter problems when the user tries to insert or
update data through the view. These anomalies often restrict their
usage. However, database vendors such as Oracle have given the data-
base developer a mechanism to help the end-user get more mileage out
of views – instead-of triggers. Like all other triggers, instead-of trigger
can be defined to fire on any DML statement where the view is the
target object. Thus the instead-of trigger will intercept the action and
for our application, apply the DML statement on the correct underly-
ing tables. (Slazinski, 2001)

To ensure data integrity, all permissions should be removed from
the underlying tables and only allow users to access those database views
that represent concrete classes in the system – thus giving access to
whole instances, instead of partial instances that are spread across mul-
tiple database tables.

IMPLEMENTATION
With the theory is explained, a comprehensive example that builds

upon the object model shown in Figure 1 follows.

Step 1
Convert your class diagram into relational tables. The resultant

DDL is shown as Approach 2 in figure 2. It should be noted that multiple
inheritance can also be addressed using these techniques – simply select
the appropriate attributes (as opposed to all attributes) from the parent
objects into the view definition and continue.

Figure 2

514 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Step 2
Create database views that represent the concrete classes in our

diagram. The resultant DDL will look like this.

create view BOSSEMP as
select EMP.NEWID as NEWID, EMP.NEWNAME as NEWNAME,
SALARY, PERCENT
from EMP, BOSS_EMP where
EMP.NEW_ID = BOSS_EMP.NEW_ID;

create view COMMEMP as
select EMP.NEWID as ID, EMP.NEWNAME as NAME,
BASESALARY, COMMPERCENT, SALES, PERCENT
from EMP, COMMISSION_EMP where
EMP.NEW_ID = COMMISSION_EMP.NEW_ID;

Step 3
Create instead-of triggers for all allowed operations (insert, update

and delete). Even though our implementation used the instead-of trig-
ger construct of Oracle, a set of stored procedures associated with each
concrete class / view combination would have worked as well.

create trigger I_BOSSEMP_TRIG
i instead of INSERT on BOSSEMP

for each row
declare

EMP_ID number := EMP_ID.NEXTVAL;
begin

insert into EMP values (EMP_ID, :new.NAME);

insert into BOSS_EMP values (EMP_ID, :new.SALARY,
:new.PERCENT);

end;

Step 4
Now the developers can code in a natural fashion as shown below.

public boolean readBossEmp(String employeeID) {

Statement statement;
ResultSet resultSet;
int i = 0;

String query = “SELECT * FROM BossEmp where NewID
= “ + “\’” + employeeID + “\’”;

statement = connection.createStatement();
resultSet = statement.executeQuery(query);
while(resultSet.next()) {

empID = resultSet.getString(“NewID”);
empName = resultSet.getString(“Name”);
empSalary = resultSet.getDouble(“Salary”);
i++; }

resultSet.close();
statement.close(); }

public boolean addBossEmp(String employeeID, String newName,
Double salary, Double percent) {

boolean OK = false;
Statement statement = connection.createStatement();
String query = “INSERT INTO BossEmp (NewID, NewName,
Salary) VALUES (‘“ + employeeID + “‘, ‘“ + newName + “‘, “
+ salary + “)”;

 int result = statement.executeUpdate(query2); }

CONCLUSIONS
Even though the examples used a basic class hierarchy, the theory

holds. Additional, follow-on research will be conducted to explore ad-
vanced class definitions – including embedded classes, multi-inheritance,
etc.

REFERENCES
Oscillating Between Objects and Relational: The Impedance Mis-

match, InterSystems Cache. Available at http://www.e-dbms.com/cache/
whitepapers/impedance.html (Date of access January 8, 2003)

Leavitt, Neal. Whatever Happened to Object-Oriented Databases?,
Computer, August 2000. Available at http://www.leavcom.com/
db_08_00.htm (Date of access January 8, 2003)

Slazinski, E. D. (2001). Views - the ‘other’ database object. Pro-
ceedings of the ISECON 2001 18th Annual Information Systems Educa-
tion Conference, 33.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/basic-impedance-mismatch-problem-

resolution/32061

Related Content

Context-Aware Multimedia Content Recommendations for Smartphone Users
Abayomi M. Otebolakuand Maria T. Andrade (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 5658-5666).

www.irma-international.org/chapter/context-aware-multimedia-content-recommendations-for-smartphone-users/113021

Information-As-System in Information Systems: A Systems Thinking Perspective
Tuan M. Nguyenand Huy V. Vo (2008). International Journal of Information Technologies and Systems

Approach (pp. 1-19).

www.irma-international.org/article/information-system-information-systems/2536

Digital Technologies for Teaching and Learning at the BoP: A Managerial Perspective
Alessia Pisoni, Alessandra Cortiand Rafaela Gjergji (2021). Handbook of Research on Analyzing IT

Opportunities for Inclusive Digital Learning (pp. 272-292).

www.irma-international.org/chapter/digital-technologies-for-teaching-and-learning-at-the-bop/278964

The Role of Serendipity in Digital Environments
Anabel Quan-Haase, Jacquelyn A. Burkelland Victoria L. Rubin (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 3962-3970).

www.irma-international.org/chapter/the-role-of-serendipity-in-digital-environments/112837

Learning From Imbalanced Data
Lincy Mathewsand Seetha Hari (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 1825-1834).

www.irma-international.org/chapter/learning-from-imbalanced-data/183898

http://www.igi-global.com/proceeding-paper/basic-impedance-mismatch-problem-resolution/32061
http://www.igi-global.com/proceeding-paper/basic-impedance-mismatch-problem-resolution/32061
http://www.irma-international.org/chapter/context-aware-multimedia-content-recommendations-for-smartphone-users/113021
http://www.irma-international.org/article/information-system-information-systems/2536
http://www.irma-international.org/chapter/digital-technologies-for-teaching-and-learning-at-the-bop/278964
http://www.irma-international.org/chapter/the-role-of-serendipity-in-digital-environments/112837
http://www.irma-international.org/chapter/learning-from-imbalanced-data/183898

