
810 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
With the growing expansion of Internet connectivity and usage by

consumers and merchants, financial institutions and governmental enti-
ties, the requirement for stable and secure software is being elevated to
the legislative and judicial levels. No longer can software manufacturers
disregard this growing requirement in fulfilling their commercial obliga-
tions. The issuance of a patch is the beginning and not the end of a
software developer’s obligations to its customers and all subsequent par-
ties impacted by its product.

In this paper, the authors provide a framework detailing the com-
ponents of a secure patch management system, a discussion on the
necessity of managing and securing each phase/component, and some
basic patch issuance concerns with regards to the supporting legal envi-
ronment.

INTRODUCTION
Books, journals and mass media are full of stories about people

trying, intentionally or unintentionally, to cause damage to informa-
tion systems. Every year, several internationally renowned organiza-
tions (like CSI/FBI or CERT) produce detailed reports indicating the
nature of these activities [CSI/FBI, 2001]. An elaborate taxonomy of
attacks [Denning, 1999] as well as many methods of handling threats
has been created and developed by security organizations.

Generally, attacks prevention and handling could be accomplished
in two major ways: implementation of the full risk analysis, like that
promoted by Common Criteria [2000] or following the baseline ap-
proach [von Solms, 1996]. The first is very costly and detailed, while
the second allows for a quick increase of system security, not necessarily
tailored for a particular application. What is important, however, is the
fact that both approaches consider development of a security policy as
a fundamental requirement.

Security policy is usually divided into three distinctive parts [Forch,
1994]: prevention activities, handling of security alerts, and disaster
recovery (security in time). These parts address detailed issues related
to handling threats against hardware, software, personnel and organiza-
tional matters (security across domains).

One particular issue spans both (time and domains) dimensions of
the security policy: introduction of new software components into a
system. These new parts are generally prepared by the primary develop-
ers as a result of:
• Discovering some errors in the existing software,
• Enhancing the system with options previously nonexistent,
• Changes in the client requirements or environment.

In the past, contacts between a software developer and a user were
very intimate as they usually were members of the same business organi-
zation. They may have even shared the same room. In contrary, more
and more users are implementing products “off-the-shelf” and the con-
tact between the developer and the end user is quite loose. They are
usually far away, both in real distance as well as in the organizational
space. Hence, the user must have detailed information about his/her
system and communicate this to the software developer. On the other
hand, the developer must provide good information to the user. Both

sides must be aware of the way in which the proper selection and trans-
port of the upgrades, method of their installations, payments for said
upgrades, and any applicable warranties. Any fault in this process could
have disastrous effects on the IT system. Thus, creating a dramatic
situation for the whole business organization.

This paper proposes a framework for conducting secure patch
management, examines some of the technical and legal management
issues in the distribution and installation of patches, and suggests several
ways of improvement.

SECURE PATCH MANAGEMENT SYSTEM COMPONENTS
For the purposes of this paper we define secure patch management

as a system incorporating the following components (refer to Figure 1):
A patch event notification, an integrity and authentication check of
the patch event notification, a patch version applicability verification,
patch transport and delivery, a patch file integrity verification, a trial
installation of the patch, patch deployment, and recipient audit compo-
nent.

Apart from the technical procedures, listed above, there are other,
equally important issues related to the distribution and installation of
software patches. These procedures result from the fact that in the
majority of cases the producer of the patches and their receivers are
separate business entities. Therefore, there is a need to set up their
mutual obligations under the law, such as the forms of payment for the
patches, installations, liabilities, etc.

This paper will concentrate mostly on the technical issues listed
above, but a brief summary of the business problems will be presented at
the end.

DISCUSSION OF THE MAJOR ELEMENTS OF THE
FRAMEWORK

Patch Event Notification
The first and perhaps the most important component is the patch

event notification. This component performs the function of making
the user aware that a patch has been developed and is available for
deployment in a timely manner. Without such timely notification of
the issuance of a patch, a patch becomes functionally useless.

To facilitate the notification process, a set of procedures or the
establishment of a notification system is required to ensure timely no-
tice of the existence of a newly issued patch. This system may be
procedural, semi-automated, or fully automated. This system may come
in the form of a push, a pull, or a combination of the two processes. The
evening news broadcasts the availability of the latest patch to correct of
security flaw is an example of a push process. Where the user visits the
respective software manufacturer to determine the latest news of soft-
ware updates is an example of a pull process. An e-mail service that an
individual subscribes to and may post to notify its entire subscription list
of the availability of a new patch is an example of a combination
process.

The level of detailed information contained within the event noti-

Development of a Framework for
Secure Patch Management

Lech J. Janczewski and Andrew M. Colarik
The University of Auckland, Department of MSIS, Private Bag 92019, Auckland, New Zealand,

Tel: 64 9 373 7599, ext 87538/83048, Email: lech@auckland.ac.nz or colarik@auckland.ac.nz

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 811

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

fication should facilitate an informed and corrective response from the
end user or system administrator. Upon receipt of a patch issuance, the
responsible party wishing to apply the patch should be able to make an
assessment as to the significance of the patch if applied to the existing
system. Details such as software name and version, any operating sys-
tem distinctions that the patch was intended to service, the location of
the patch, the date of issue, any acquisition or download requirements,
and perhaps any additional information required for the decision that
the patch is required and necessary to the continued use of the software
product.

The patch event notification should be made available to all re-
sponsible parties whose functions are maintaining the smooth opera-
tion of the host system where the software product resides, i.e. system
administrators or end-users.

Patch Event Integrity and Authentication
Once a patch event notification has been received, its integrity and

authentication should be seriously considered. This commonly over-
looked step is to confirm that the patch event notification actually
came from the software manufacturer and has not been modified either
intentionally or through error. Data origin authentication allows sources
of received data to be verified as claimed and data integrity is used to
detect unauthorized changes in data during transmission [Tripunitara,
1998].

When the availability of a patch has been communicated through
the public and/or private media networks such as television, it is not
uncommon to hear of hoaxes or statements made with bad information.
Traditionally, upon becoming aware of a new patch, users visit the
manufacturers web site and provide their own verification of the patch’s
existence. Newsgroups provided a more focused topical dissemination
of patch availability but rely upon interested third party contributions.
Industry standards of authentication are rarely found in use with
newsgroup postings. Another alternative are numerous management
services that provide timely notification of issued patches and updates.
Companies such as Net Infrastructure [2002], PatchLink [2002], and
Mission Critical Linux [2002] are a few examples of the type of man-
agement services available. These services are generally provided by e-
mail notification but may include remote operational updates.

To prevent unscrupulous individuals from misinforming users, cryp-
tographic methods may be utilized to provide patch event authentica-
tion [Stallings, 1999]. Mechanisms such as private and public key ex-
change, and digital certificates that are processed through professional
trusted third parties [VeriSign 2002], have been utilized in this capacity.
Hinde [1999] states that “an ‘electronic signature’ is any substitute for
a handwritten signature on and electronically generated document”. A
handwritten signature does not necessarily have the same capacity to

ensure the origin and integrity of data as a digital signature but can serve
to authenticate data in some way.

Patch Version Verification
At this point, a user has received a patch event notification through

some dissemination vehicle and has verified the integrity and authentic-
ity of the patch event notification. The user must determine that the
information contained in the patch notification is applicable with re-
gards to the software and its current revision level. It may be stated that
the version level of any given installed software shall dictate which
patch file or files are required.

When a patch event notification occurs, the patch version must be
compared to the existing installation software version. This is gener-
ally done through the use of manuals, installation diskettes and CD-
ROMs, version references listed within the menus of the software, and
stored within the operating system registry. In addition to manually
referencing the software version, third party applications and diagnos-
tic utilities can provide an accurate version level such as Norton System
Works [2002].

In a secure and automated approach to version verification, it
would be appropriate and practical to verify that the patch and software
versions match at the notification, acquisition, and installation phase of
an update. Customized software must also be considered when deciding
the applicability of any given patch. Assuming that the patch is indeed
required for the continued operation of the intended software product,
successful patch transport becomes the next issue.

Patch Transport and Delivery
Historically, a CD-ROM or floppy diskette would be delivered via

the postal authority. The medium may be delivered via certified mail or
by special courier. In the age of the Internet, electronic delivery occurs
by downloading the patch file(s) via the manufacturer’s web site using
file transfer protocol (FTP). Acquiring the patch may also be com-
pleted via newsgroups and e-mail distribution as an attachment file to
the communication. But all of these methods bring into question the
integrity of the patch file(s). The least likely method for receiving
corrupted or tampered patch files is by receiving a CD-ROM or floppy
diskette by mail. While it is unlikely that a subversive individual would
be able to intercept and modify the files, corruption at the time of disk
replication has been a diminishing yet reoccurring problem. In addition,
what is to stop some enterprising individual or firm from creating offi-
cial looking diskettes and mailing them in some professional manner to
a system administrator? An uninformed employee may simply perform
the update and unwillingly become an accomplice to creating a backdoor
pipeline that may be used to exploit a company’s computer resources.

Electronic delivery via the Internet provides less assurance of in-
tegrity. Web sites and FTP servers can be spoofed, session requests may
be diverted, files may be modified prior to download and during down-
load, or have additional files bound to the patch file(s). What is needed
to improve total system security is some form of patch integrity verifi-
cation. In the case of receiving an update patch via mail service, addi-
tional customer information may be provided or integrated into the
shipping invoice or incorporated into the original software install. For
example, the installation software and updates issued by Great Plains
Dynamics [2002] integrates the customer name into the authorization
code. For electronic delivery of patches, use of a generated hash func-
tion or message digest that is based on the original patch file may
provide a means for patch integrity verification. Essentially, a hash
function or message digest is a mathematical function that takes a vari-
able-length input string and converts it into a fixed-length binary se-
quence. It is a uniquely, identifiable digital fingerprint designed in such a
way that it is hard to reverse the process by making it difficult to find
two strings that would produce the same hash value [Schmidt, 1990].

The manufacturer of the patch could provide access to a pre-
generated hash function based on the original patch. This would permit
the user to validate that the patch file has not been modified by anyone
since its original creation. A user would be able to generate a hash
function from the downloaded file and compare it with the original

Figure 1: Secure Patch Management System framework

812 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

provided by the manufacturer. A match would verify the integrity of
the patch.

Patch Trial Installation
The smooth and consistent operation of the software system is

one of the primary objectives of the system administrator and the end
user. It is very easy to assume that a patch that is provided by the
manufacturer will only improve the software’s performance. However,
experience teaches that no software system operates in a vacuum. Hard-
ware, other software, operating systems, and other available utilities
impact the total information processing system environment. Manu-
facturers of software can only attempt to provide stable products in a
continuously evolving, diverse, and customized system environment.
As a result, an aspect of securing the integrity of the system in which the
software operates is to provide a test bed for the trial installation of a
patch. SAP software has a system test area known as the sandbox or test
system. SAP recommends that updates and modifications to the system
are to be implemented in the sandbox before full deployment [SAP,
2001]. In addition, products such as GoBack 3 by Roxio [2002] provide
users the ability to uninstall updates when system integrity needs to be
restored.

Patch Deployment
Once the patch installation has been tested and deemed appropri-

ate for the system, patch deployment should be prompt and complete.
Regardless of whether the patch is deployed manually, through semi-
automated, or fully automated means, access control and authorization
must be a considered component of this phase. A distributed system of
checks and balances may wish to be employed that allows the responsi-
bilities of patch acquisition and installation to be divided between indi-
viduals to ensure that all procedures have been followed prior to instal-
lation.

Recipient Auditing of the Components
The last component in a secure patch management system is one

that should be fully integrated into all aspects of secure patch manage-
ment. This component is the audit function. “System audit logs pro-
vide information about usage characteristics on a computer system”
[Schultz et al, 2001] and are a key component in transmission controls
[Aggarwal et al, 1998]. When an event notification occurs a log entry
should document the receipt and details of the notification. The result-
ing authentication of the event notification should also be documented.
This will provide a comprehensive list of valid and in valid sources for
notification. The version verification that the patch file is applicable
or non-applicable should be included in the audit log. Whether a soft-
ware patch is received by mail or electronic means, the source informa-
tion and acknowledgment of delivery should also be included in the log.
All patch integrity checks should be fully documented and recorded. All
trial installations of the patch and the resulting consequences should be
recorded along with a system snapshot of available hardware and soft-
ware components. Once the patch has been deployed, all appropriate
documents and manuals should be updated to reflect the current version.
Lastly, a distributed storage and access of all audit logs should be imple-
mented to ensure that the documentation trail is not altered or deleted
without the highest level of access.

DISCUSSION OF THE SEMI-TECHNICAL COMPONENTS
OF THE FRAMEWORK

An important issue, which so far has not been well researched, is
the problem of where to store all the available patches. In the case of
such companies like Microsoft or IBM, producing and announcing new
patches to the existing systems is relatively simple. Large companies
such as these may produce patches that even the most unexperienced
user would be able to direct their search efforts for upgrades to the well-
known software manufacturer.

In our opinion, there is not a straightforward solution to this prob-
lem unless big companies control and coordinate all points of entry.

Another issue surfaces and becomes more complicated when deal-

ing with open source systems like Unix or Linux. It is generally left to
the user to determine which of the available patches developed to re-
solve a given issue is the best selection. The question that lies at the core
for this type of approach is how does a user know that a patch produced
by company A has or has not incorporated new changes that may have
been incorporated by a patch developed by company B?

A good secure patch management system must be scalable and
accommodate diverse access to patches regardless of the size of manu-
facturer or the size of the recipient. In the case of a small installation,
patch introduction would be relatively simple: usually an owner/user
installs basic software components from one source manufacturer, such
as Microsoft or Apple Computer. But in the case of company-wide
installations, there may be hundreds of different components, sources,
and locations. Servicing updates could become an extremely challeng-
ing task for even a large organization. This concept suggests the intro-
duction of automation into the process, including the receiving of infor-
mation about the availability of a patch, its download, and its testing,
and installation.

Another open research question is that of organizing libraries con-
taining information about the available patches and the patches them-
selves. At present we are vigorously researching this particular issue.

The possibility of automating the process of delivery and installa-
tion of software patches raises an interesting technical as well as legal
issue: to what extent would a user allow the supplier to penetrate their
installation? This type of legal issue emerged with the introduction of
Windows 95 and continues with Windows XP. Microsoft has included a
clause in its accept/decline portion of its licensure agreement stating
that it may remotely examine and update the configuration of a user’s
system. In addition, this issue extends to push technologies such as Java
applets and ActiveX modules that promote the acquisition and delivery
of a user’s system information.

A discussion of the legal aspects will take place in the next section
(non-technical components), but there are some additional technical
issues hat need to be considered. The first is how to set up the smooth
exchange of information between the user of a system and a developer,
and to do so such that unauthorised reads by a third party would be
prevented. This also needs to be conducted such that confidential infor-
mation of the accessed party is not disclosed. One possible solution
could be to produce a sort of a system passport or system ID that would
contain a listing of all components and versions, and be located sepa-
rately from the real system, i.e. getting access to this file would not
compromise the security of the rest of the system. One may expect
that such a solution would be eagerly promoted by the software develop-
ers but would be strongly opposed by software users, especially those
who are using non-registered software.

DISCUSSION OF THE NON TECHNICAL COMPONENTS
OF THE FRAMEWORK

Most of the non-technical issues concentrate on the problem of
validating electronic documents, i.e. delivery and deployment. In the
case of more advanced users or bigger installations, successful deploy-
ment of a patch management system would require the automation of
the process. The deployment of automating the entirety of the patch
management system implies that the parties involved in the process
would trust the electronic-only-data for the clearing of their financial
and business obligations.

When electronic-only transaction systems are deployed, it is in
domestic markets that business obligations may mainly be executed and
enforced. Problems begin when there is a need to cross international
borders. This can be illustrated in the best way by comparing the trans-
action policies of dot-com companies. Amazon.com is readily accepts
orders coming from outside the USA [Amazon.com 2002], but is reluc-
tant to ship goods outside the USA territories (books excluded).

Another issue, which is not yet solved, is the validity of digital
signatures, necessary in electronic commerce for such things as con-
tracts, integrity validation of files, and others. While many countries
have introduced related legislation, like USA [Digital Signature, 2000],

Information Technology and Organizations 813

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Ireland or Poland [Zalewski, 2001], others have not. These laws are also
not entirely clear as to international jurisdiction.

Yet another quite interesting issue, which has not yet been solved,
is of setting the date and location of an electronic transaction. A docu-
ment signed between two parties, one located in New Zealand and the
other in United Kingdom could bear a date/time stamp of 6th of April at
6:00 pm in New Zealand or 5th of April, 6:00 am in UK. Which date/time
stamp is valid? This question is not as insignificant as one may suggest.
12 hours difference means that having $1M for 12 hours may produce a
gain or losses of around $68 (with 5% interest per annum). The func-
tional aspects of transaction agreements create a series of time con-
straints that may not so easily be resolved when they transcend interna-
tional borders.

As a software manufacturer, consider all of these non-technical
issues in the context of supplying a software fix, patch or update. If such
a firm conducts business in a manner that exposes its customer to addi-
tional risks resulting in damages, hasn’t the firm failed to fulfil its
fiduciary responsibility? If the technology is available to secure the
communication transactions and the firm does not utilize these, is it not
in some way responsible for subsequent damages? If a patch is installed
and it causes the system integrity to fail, isn’t the firm culpable in the
resulting crash?

We believe that the very nature of the software industry and elec-
tronic transactions across international borders renders many of these
issues moot while licensure agreements shield the manufacturer, and
practical jurisdiction is rare. It may very well take several hall-mark
legal cases to void/modify the licensure agreement and an international
treaty on jurisdiction to remedy this situation.

CONCLUSIONS
In this paper we have presented a framework for securing patch

management, a collection of important issues in patch management, a
discussion and series of research questions that are being pursued. These
issues and questions can be divided into three, quite separate, domains:
• Technical problems related to identifying the patch and transporting

it safely to the destination, and its deployment,
• Confidentiality issues resulting from the need to exchange important

information between the supplier of the patches and their end user,
• Inadequacy of the law to handle the exchange of information in the

electronic form only, especially in the case of international contacts.
We signalled the important issues within each of these domains.

We believe that the future of the efficient utilization of patch manage-
ment systems lies in the automation of the process. However to be
successful, it requires finding solutions to all of the problems mentioned
in this paper. At the University of Auckland, we are currently research-
ing these issues, with special emphasis on the technical aspects of secure
notification, transporting, and deploying patches, resulting in the de-
velopment of a refined architecture encompassing all the functions

mentioned in this paper.

REFERENCES
[Aggarwal et al], Aggarwal, R., Rezaee, Z., Soni, R., Internal con-

trol considerations for global electronic data interchange, Interna-
tional Journal of Commerce & Management, Volume 8, No. ¾,
1998.

[Amazon.com, 2002], http://www.amazon.com/help/Payment
Methods - We Accept and Shipping restrictions

[Common Criteria, 2000], httm:// www.csrc.nist.gov/cc/ccv20/
ccv2list.htm.

[CSI/FBI, 2001], 2002 Computer Crime and Security Survey, http:/
/www.gocsi.com/press/20020407.html.

[Digital signature, 2000] http://www.mbc.com/db30/cgi-bin/pubs/
LMZ-E-SIGN.pdf

[Denning, 1999], Denning, D., Information Warfare and Security,
Addison Wesley, 1999.

[Forch, 1994], Forch, K., Computer Security Management, Boyd
& Fraser, 1994.

[Great Plains Dynamics, 2002], http://www.greatplains.com/
[Hinde, 1999], Hinde, S., Step into a secure New World - Compsec

’99 Report, Computers and security, Volume 18, No. 8, 1999.
[Mission Critical Linux, 2002], http://www.missioncriticallinux.com
[Net Infrastructure, 2002], http://www.netinfra.com/patching.htm
[Northon System Works, 2002], http://www.symantec.com/sabu/

sysworks/basic/
[Patch Link, 2002], http://www.patchlink.com
[Roxio, 2002], http://www.roxio.com/en/products/

datarecoverypc.jhtml
[SAP, 200] SAP R/3 Upgrade Guide. SAP Labs, Inc. 2001.
http://wwwtech.saplabs.com/docs/sysadmin/upgrades.pdf
[Schultz et al, 2001], Schultz, E., Proctor, R., Mei-Ching Lien,

Gavriel Salvendy, G., Usability and Security An Appraisal of Usability
Issues in Information Security Methods, Computers & Security, Volume
20, No. 7, 2001.

[Schmidt, 1990], Schmidt, D., GPERF: A Perfect Hash Function
Generator, Second USENIX C++ Conference Proceedings, April, 1990.

[Stallings], Stallings, W., Network Security Essentials, Prentice Hall,
1999

[Tripuntara, 1998], Tripunitara, Spafford, E., Issues in the incor-
poration of securities services into a protocol reference model, Fifth
ACM Conference on Computer and Communications Security, 1998.

[Verisign, 2002], http://www.verisign.com
[von Solms, 2996], von Solms, R., Information Security Manage-

ment: the Second Generation, Notes on Information Security Manage-
ment, IFIP, 1996.

[Zalewski, 2001], Zalewski, T., 2001, Front wewnetrzny (Internal
front), Polityka, No 41, 2001

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/development-framework-secure-patch-

management/32149

Related Content

Shelter Selection with AHP Making Use of the Ideal Alternative
José G. Hernández R., María J. García G.and Gilberto J. Hernández G. (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 2003-2015).

www.irma-international.org/chapter/shelter-selection-with-ahp-making-use-of-the-ideal-alternative/112607

Robot Path Planning Method Combining Enhanced APF and Improved ACO Algorithm for Power

Emergency Maintenance
Wei Wang, Xiaohai Yin, Shiguang Wang, Jianmin Wangand Guowei Wen (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/robot-path-planning-method-combining-enhanced-apf-and-improved-aco-algorithm-for-

power-emergency-maintenance/326552

An Optimal Policy with Three-Parameter Weibull Distribution Deterioration, Quadratic Demand,

and Salvage Value Under Partial Backlogging
Trailokyanath Singh, Hadibandhu Pattanayak, Ameeya Kumar Nayakand Nirakar Niranjan Sethy (2018).

International Journal of Rough Sets and Data Analysis (pp. 79-98).

www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-

demand-and-salvage-value-under-partial-backlogging/190892

Weighted SVMBoost based Hybrid Rule Extraction Methods for Software Defect Prediction
Jhansi Lakshmi Potharlankaand Maruthi Padmaja Turumella (2019). International Journal of Rough Sets

and Data Analysis (pp. 51-60).

www.irma-international.org/article/weighted-svmboost-based-hybrid-rule-extraction-methods-for-software-defect-

prediction/233597

The Role of Social Relationships and Social Networks in IT Project Teams
A.C. Leonardand D.H. Van Zyl (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 5325-5333).

www.irma-international.org/chapter/the-role-of-social-relationships-and-social-networks-in-it-project-teams/112981

http://www.igi-global.com/proceeding-paper/development-framework-secure-patch-management/32149
http://www.igi-global.com/proceeding-paper/development-framework-secure-patch-management/32149
http://www.irma-international.org/chapter/shelter-selection-with-ahp-making-use-of-the-ideal-alternative/112607
http://www.irma-international.org/article/robot-path-planning-method-combining-enhanced-apf-and-improved-aco-algorithm-for-power-emergency-maintenance/326552
http://www.irma-international.org/article/robot-path-planning-method-combining-enhanced-apf-and-improved-aco-algorithm-for-power-emergency-maintenance/326552
http://www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-demand-and-salvage-value-under-partial-backlogging/190892
http://www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-demand-and-salvage-value-under-partial-backlogging/190892
http://www.irma-international.org/article/weighted-svmboost-based-hybrid-rule-extraction-methods-for-software-defect-prediction/233597
http://www.irma-international.org/article/weighted-svmboost-based-hybrid-rule-extraction-methods-for-software-defect-prediction/233597
http://www.irma-international.org/chapter/the-role-of-social-relationships-and-social-networks-in-it-project-teams/112981

