
Information Technology and Organizations 849

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
This paper proposes a new method of document version management for

workflow management systems. Recently, a workflow management system is
considered as an essential element for automation of complex business pro-
cesses, particularly for those in an e-Business environment. A core element of
such processes is the documents that flow over the processes. Therefore, it is
very important to have a systematic management of document changes along
with the process execution. We propose a version model that can take into
account the structure of the underlying process over existing version manage-
ment techniques. In this model, the components of a document and a process
are associated each other, and this becomes the basis for automatic creation of
document versions and automatic configuration of relevant document for a
certain user at a certain stage of process. A prototype system has been imple-
mented, and the potential advantages of the approach have been discussed.
Keywords: Business process, Workflow, Version management, Electronic docu-
ment management

1. INTRODUCTION
For the last several years, it has been conceived that WorkFlow Manage-

ment System (WFMS) is an essential element for automation of complex busi-
ness processes [1]. The WFMS is a software system that defines, controls and
manages business processes [6], [7]. A business process usually involves docu-
ments, and in many cases, filling in the documents is considered as an impor-
tant part of carrying out work in the process. Therefore, efficient handling of
documents is of great significance in business process management.

A business process usually involves many participants who may deal
with the same document on the process. As soon as one finishes one’s task in
the document, it is handed over to the next participant. This order of task
sequence is specified in a process model. In a certain task, the responsible
employee needs to work on a relevant version of the document, and updates it.
This is repeated until the whole process is completed. In this setting, it is often
very important to identify who is responsible for what part of the document
contents. The importance may be doubled in e-Business environments in which
many companies exchange documents.

Document management, as such, is an important part of business pro-
cesses. Therefore, many commercial WFMS’s provide functions dealing with
document management to some extent. They, however, are limited to simple
storage services and delivery of documents. A process execution usually ac-
companies document changes, such as adding, modifying, and deleting some
of the document contents. This produces the necessity of managing document
changes along with process execution. To the best of our knowledge, there is
yet no system that can provide systematic management of document changes
while taking into account the underlying process controlling the document
flow.

To overcome the above limitation in conventional WFMS’s, we propose
a new version creation model. The essence of the proposed approach is at the
fact that it takes into account the semantics of underlying processes. We
modularize a document into several components, called workunits in this pa-

per, and associate each workunit with the activities that are supposed to handle
it. We also propose a run-time model with which document versions can be
created during process execution.

2. WORKFLOW AND VERSION MANAGEMENT
Workflow management is a term for a diverse and rich technology to

support business process automation. In almost all WFMS’s, defining a pro-
cess model is prerequisite to automatic execution and control of the actual
process. A process model is a coordinated set of activities, and an activity is a
logical step or description of a piece of work. A WFMS first specifies a workflow
process by defining activities that contribute to achieving the business objec-
tives intended by the process and establishing the relations among the activi-
ties. While the process is being executed, the resources, like documents or
application programs that are needed to perform each activity, are delivered
automatically by the WFMS.

Version management, in its broadest sense, is a systematic method of
dealing with changes of objects over time, and version is defined as a snapshot
of an object that is semantically meaningful at a point in time [8]. The object
changes are usually represented in a graphical form, and this is called version
graph [8]. There are two different types of versions that are revision and vari-
ant [3]. Revision is a relation between two versions that are directly interlinked
in a version graph. This is established when one of them is created by modify-
ing the other. On the other hand, variant is the relation defined over two or
more versions that are generated independently from the same previous ver-
sion. This relation is not explicitly indicated in a version graph, but appears as
a set of parallel paths.

There has been much research work in the field of version models [3],
[8], and the version management has been successfully applied to such areas
as software configuration management [3], engineering data management [5],
[8], and temporal database. Although the application areas are different, the
models used are similar to each other in that they manage the change of ob-
jects over the passage of time.

3. WORKFLOW-BASED VERSION MANAGEMENT
3.1. Process and Document Structure Models

A typical workflow system runs on a process model, like the example in
Figure 1 (a). It, in general, represents activities, their relations, and attributes
describing the process and activities. We can classify the process flow into
serial, AND-parallel, and OR-parallel. A serial process is one that does not
involve any split and merge, whereas an AND-parallel and OR-parallel pro-
cess has split and merge. The latter two process types include more than one
branches between the split and merge activities. Notice that a workflow pro-
cess can be modeled with a combination of those types [7]. There is a huge
body of literature in the process model, and readers can refer to [2], [10].

Business documents are usually very well structured, and the format is
predetermined. Such a document is called form document. We partition a form
document into a set of logical parts, each of which becomes a unit of work
dealt with by an activity. The unit of work is called a ‘workunit’ in this paper.

Management of Document Versions in
Workflow Systems

Yeongho Kim†1), Hyerim Bae1), Yong Tae Park1), and Woo Sik Yoo2)

1)Department of Industrial Engineering, Seoul National University; Seoul, 151-742, S. Korea; Tel: 82-2-880-8335, Fax: 82-2-889-8560;
E-mail: yeongho@snu.ac.kr

2)Department of Industrial Engineering, University of Inchon; Inchon, 402-749, S. Korea; Tel: 82-32-770-8488, Fax: 82-32-770-8488;
E-mail: wsyoo@incheon.ac.kr

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

850 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 1 (b) shows an example form document and its workunits. Once a pro-
cess model and a document model are prepared, each workunit is assigned to
some activities. The relation defined on the pair of workunit and activity is
called assignment association. Every workunit has to be assigned to at least
one activity, whereas an activity can have nothing to do with any workunit or
deal with multiple workunits.

3.2. Document-Workunit Relations
In addition to the build-time models of process and document structures

in the previous section, we need a run-time model that consists of version
graphs and document-workunit relations. A version graph records the history
of changes of an object that can be either a document or a workunit.

Creation of a new workunit version always leads to forming a new docu-
ment version. In addition, a certain version of document can actually be con-
sidered as a collection of workunit versions. Document-Workunit Relation
(DWR) represents such relations between a document version and a workunit
version as follows.

Definition 1 (Document-workunit relations)
Consider a document d and its workunit w. The DWR relation, estab-

lished between the p-th version of d and the q-th version of w, i.e., v
p
(d) and

v
q
(w), is one of the following three types.

• The relation, v
p
(d) ↔I v

q
(w), is an initialization relation (DWRI) indicating

that both v
p
(d) and v

q
(w) are the initial versions, that is, p = q = 0.

• The relation, v
p
(d) ←G v

q
(w), is a generation relation (DWRG) stating that

the workunit version, v
q
(w), generates the document version, v

p
(d).

• The relation, v
p
(d) ®C v

q
(w), is a composition relation (DWRC) expressing

that the workunit version, v
q
(w), is an element of the document version,

v
p
(d).

4. TYPES OF VERSIONS
Based on the build- and run-time models described in the previous sec-

tions, we are able to manage versions while executing business processes. Since
the operations of version creation are different depending on the types of pro-
cess flow, they need to be described for each of the types. Due to the space
limitation, a brief introduction to each of the type is presented below. A more
detailed explanation is available in [3].

4.1. Serial Process
Activities in a serial process are all linearly connected. Such a serial

process generates versions having revision relations. Consider the serial pro-
cess in Figure 2 (a). The process deals with document d, and the document’s
workunits are assigned to the activities as indicated in the figure. The docu-

ment that has to be checked out in a serial process is always the latest version.
The check-out procedure identifies the workunits that the latest document ver-
sion consists of, and constructs it by simply putting them together. On the
other hand, check-in procedure simple adds up a revision to the current ver-
sion graph.

4.2. AND-parallel Process
An AND-parallel process allows multiple activities to be processed si-

multaneously. The split activities are independent of each other, and the
workunits assigned to the activities also need to be dealt with in parallel. In
this paper, AND-parallel processes are further classified into competitive split,
cooperative split, and combined split. Depending on these split types, docu-
ment versions are managed differently.

Competitive split
A competitive split is an AND-parallel process such that the same

workunit is assigned to every branch of the split process. That is, after a pro-
cess splits, all the branches check out the same document and work on the
same workunit, but each of them generates its own version. Therefore, a com-
petitive split produces several alternatives for one workunit. However, not all
the alternatives are meaningful in the succeeding process. It can be considered
that the branches compete to produce an alternative that is used in the final
version. This is the reason we call it a competitive split. The winning version
could be automatically determined if the business logic is well understood and
thus it can be codified. Otherwise, it is manually chosen. A simple example of
competitive split is presented in Figure 2 (b).

Cooperative split
A cooperative split is a type of parallel process where each branch deals

with different workunits. It is assumed that dependency doesn’t exist among
the workunits so that they can be processed in parallel. After finishing all the
branches, the collection of the resulting workunits can form a document ver-
sion. It can be seen that all the branches cooperate together to produce one

(a) Process model

(b) Form document

Figure 1. Examples of process model and form document

Figure 2. Process types and version creation models

Information Technology and Organizations 851

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

document version. This explains the name of the split. A simple example of
cooperative split is shown in Figure 2 (c).

Combined split
A combined split is a combination of competitive split and cooperative

split. Sometimes, the assignment of workunits to process activities cannot be
explained by only one of the two split types. That is, some workunits are in a
competitive split while the others a cooperative split. In such a case, the com-
bined split is used. An example process of a combined split is presented in
Figure 2 (d). Notice that every branch deals with workunit w

1
. On the other

hand, w
2
 and w

3
 are processed in different branches. While executing a com-

bined split, the versions for w
1
 is created based on the competitive split, and

those for w
2
 and w

3
 follow the cooperative split.

4.3. OR-parallel Process
An OR-parallel process is similar to an AND-parallel process in terms of

its process structure. It has split and merge activities and branches. However,
not all the branches are meaningful at run-time. Some of the branches are
selected and activated, and the process terminates when one of them finishes
successfully. The branches that have not finished yet are simply canceled. At
build-time, it is impossible to know which branch reaches to completion. Hence-
forth, in our version model, each branch maintains a version graph, but the
one for successful branch becomes effective after merging the branches. An
example of OR-parallel process is shown in Figure 2 (e).

5. PROTOTYPE IMPLEMENTATION
We have implemented a prototype system for the models proposed in

this paper. The system is implemented on top of an existing WFMS, called
SNUFlow [9], by adding component modules that provide version manage-
ment functions. Some of the functions can be accessed at ‘http://
workflow.snu.ac.kr:8080/SNUFlow/client.jsp’.

The overall system architecture is presented in Figure 3. The system in-
cludes build-time, run-time, and client modules. The build-time modules in-
clude a process designer, document designer, and Document-Process (D-P)
association component. The process designer and document designer provide
interfaces for designing processes and documents and the D-P association com-
ponent for establishing relations between processes and documents. These al-
together describe how a process will be automatically executed at run-time.
The specifications are imported from or exported to a workflow storage via an
I/O manager.

In order for a user to easily carry out an activity, the prototype system
identifies and delivers a right version of document to the user, so that the user
can readily check out the document assigned to the activity. The user can
simply click a mouse to check out the document version. On completion of the

activity, the user can check in the new version of the document, then the sys-
tem automatically updates the versions of workunit and document.

6. SUMMARY AND CONCLUSIONS
The main purpose of our research is to develop a method of managing

changes of documents in workflow processes. The essence of the proposed
approach is that it takes into account the semantics of underlying processes.
Our approach provides several advantages as follows. First, it helps workflow
users by automatically checking out the right document version that the users
have to work. Second, users can have a better understanding of the document
changes. This is because the document changes are tightly associated with the
underlying workflow processes, and our system can visualize it. Third, it is
possible to recover a document into an earlier version that has been created
before. When the process execution needs to be returned to a previous activity
due to system errors or exceptional cases, it is required to recover the docu-
ment at that activity. We think our version model can be a solution to the issue
of workflow recovery. Fourth, since it is now possible to readily identify the
content changes associated with a certain version creation, the approach would
increase the responsibility of the employee in charge of the version creation.

An interesting further research issue is to support cooperative authoring
in computer supported collaborative work environments. A cooperative
authoring process involves multiple authors and thus many changes may take
place even at the same time. It is important but not an easy task to support
systematic versioning in the environment. Another issue is to develop stan-
dardized API’s or standard versioning protocol for version management to
interface with different WFMSs.

ACKNOWLEDGEMENT
This research was partly supported by the program of National Research

Laboratory granted from Korea Institute Science and Technology Evaluation
and Planning. It was also supported by the Korea Science and Engineering
Foundation (KOSEF) through the Northeast Asian e-Logistics Research Cen-
ter at University of Incheon.

REFERENCES
[1] W. M. P. van der Aalst, Process-oriented architecture for electronic

commerce and interorganizational workflow, Information Systems 24 (8) (1999)
639-671.

[2] W. M. P. van der Aalst and A. H. M. ter Hofstede, Verification of
workflow task structures: A petri-net-based approach, Information Systems
25 (1) (2000) 43-69.

[3] H. Bae, W. Hur, W. S. Yoo, and Y. Kim, “Document Versioning on
Workflow Processes,” Submitted to Computers in Industry, 2002.

852 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[4] R. Conradi and B. Westfechtel, Version models for software con-
figuration management, ACM Computing Survey 30 (2) (1998) 232-282.

[5] K. R. Dittrich and R. A. Lori, Version support for engineering data-
base systems, IEEE Transactions on Software Engineering 14 (4) (1988) 429-
437.

[6] D. Georgakopoulos, M. Hornick, and A. Sheth, An overview of
workflow management: from process modeling to workflow automation infra-
structure, Distributed and Parallel Databases 3 (1995) 119-153 (also available
at http://citeseer.nj.nec.com/georgakopoulos95overview.html).

[7] D. Hollingsworth, Workflow management coalition specification:

The workflow reference model, WfMC specification, WFMC-TC-1003, http:/
/www.wfmc.org, 1995.

[8] R. H. Katz, Toward a unified framework for version modeling in
engineering database, ACM Computing Surveys 22 (4) (1990) 375-408.

[9] Y. Kim, S. Kang, D. Kim, J. Bae, and K. Ju, WW-Flow: Web-based
workflow management with runtime encapsulation, IEEE Internet Computing
4 (3) (2000) 55-64.

[10] G. Mentzas, C. Halaris, and S. Kavadias, Modelling business pro-
cess with workflow systems: An evaluation of alternative approaches, Interna-
tional Journal of Information Management 21 (2) (2001) 123-135.

[11] E. Sciore, Versioning and configuration management in an object-
oriented data model, VLDB Journal 3 (1994) 77-106.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/management-document-versions-

workflow-systems/32161

Related Content

Digital Textbook
Elena Railean (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2268-2277).

www.irma-international.org/chapter/digital-textbook/112639

DISMON: Using Social Web and Semantic Technologies to Monitor Diseases in Limited

Environments
Ángel M. Lagares-Lemos, Miguel Lagares-Lemos, Ricardo Colomo-Palacios, Ángel García-Crespoand

Juan Miguel Gómez-Berbís (2013). Interdisciplinary Advances in Information Technology Research (pp. 48-

59).

www.irma-international.org/chapter/dismon-using-social-web-semantic/74531

Information Systems on Hesitant Fuzzy Sets
Deepak D.and Sunil Jacob John (2016). International Journal of Rough Sets and Data Analysis (pp. 71-97).

www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707

Human Supervision of Automated Systems and the Implications of Double Loop Learning
A.S. White (2013). International Journal of Information Technologies and Systems Approach (pp. 13-21).

www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-

learning/78904

Towards Knowledge Evolution in Software Engineering: An Epistemological Approach
Yves Wautelet, Christophe Schinckusand Manuel Kolp (2010). International Journal of Information

Technologies and Systems Approach (pp. 21-40).

www.irma-international.org/article/towards-knowledge-evolution-software-engineering/38998

http://www.igi-global.com/proceeding-paper/management-document-versions-workflow-systems/32161
http://www.igi-global.com/proceeding-paper/management-document-versions-workflow-systems/32161
http://www.irma-international.org/chapter/digital-textbook/112639
http://www.irma-international.org/chapter/dismon-using-social-web-semantic/74531
http://www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707
http://www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-learning/78904
http://www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-learning/78904
http://www.irma-international.org/article/towards-knowledge-evolution-software-engineering/38998

