
1074 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

INTRODUCTION
In object-oriented programming languages, and in particular Java, the

most elemental concepts are those of class and object. Yet, in many textbooks
that are the basis of teaching and learning Java, ideas are not clearly presented.
Textbooks that are used to introduce students to object-oriented programming
in Java, ought to be clear about the Java structures of class and object and how
they are constructed and used. There is a problem with most textbooks pur-
porting to be the learning platform for object-oriented programming in Java.
The problem is the breadth and depth of the discussion and presentation of the
class and object structures. These structures are concepts introduced and dis-
cussed, but the discussion is spare and sparse. There is a reliance on using the
syntactical structures to enhance and extend the explanations of what classes
and objects are, but the explicit coupling of syntax to concept is weak. The
cognitive model of class and object is usually fragmented and not clearly drawn.
Object-oriented textbooks in Java do not sufficiently link, in a descriptive or
explanatory way, the conception with the syntax. A great burden of under-
standing of how things go together and work in regards to class and object
rests upon the individual reader. Consequently, this essay is a study and analy-
sis of Java textbook presentations of class and object concepts and how these
ideas are modeled and implemented. In other words, the paper is a study of the
cognitive models of class and object. The paper discusses various ways in
which the class and object concepts are represented to students of the Java
language.

OBJECT-ORIENTED PROGRAMMING
All of the textbooks say something about object-oriented (O-O) program-

ming, or the object-oriented paradigm. They, in some fashion, try to set the
context, but not very well. In most cases, the object-oriented paradigm is pre-
sented as a natural way of dealing with what most of the authors call “the real
world.” Programming in the O-O paradigm is modeling entities of real world
environments.

One author writes that O-O programs are “models” of “real world sys-
tem” The program consists of “objects” representing “entities,” customers,
vendors, reports, transactions, in the world (Hughes, 2002, 31). Another au-
thor states that object-oriented languages “model objects in the real world”
and that classes are “representations” of things in the world (Cornelius, 2001,
xiii-xiv). Another text states that another O-O feature is its “natural” way of
perceiving and thinking about things. Problem solving is identifying “objects”
in problematic situations and any necessary “actions” (Garside & Mariani,
2003, 29).

But, even so the O-O paradigm is not clearly conceptualized in the text-
books. For example, one author states that object orientation is about objects
and sending and receiving “messages” (Morelli, 2000, 58). The same text de-
scribes object oriented programming in terms of the principles or rules such as
divide and conquer, encapsulation, interface, information hiding, generality,
and extensibility (Morelli, 2000, 8-9). Thus, a text states that “object defini-
tions” and “instances of actual objects” are features of the O-O paradigm
(Garside & Mariani, 2003, 35).

For several other textbooks, the O-O paradigm refers to how “data” and
“procedures” are packaged in “objects” or “encapsulated,” effectively “hid-
ing” them (Shelly, Cashman & Starks, 2001, JI.10; Deitel & Deitel, 2002,

The Concepts of Class and Object
as Presented in

Selected Java Textbooks
Robert Joseph Skovira, PhD
Robert Morris University, PA

rjskovira@worldnet.att.net

380). Finally, one text, usually used as a support text in trying to understand
object-oriented programming, states that O-O paradigm is about joining func-
tions and data to simplify a program (Holzner, 1998, 15).

GENERAL NOTION OF OBJECT
Some of the texts begin the discussion of what an “object” is by alluding

to examples of experienced objects in the everyday world. Am object is thought
of as a conceptual structure or a module of code. Objects are representational
of things we deal with (Savitch, 2001, 211). But, one author sees an object in
relation to activity and tasks. Classifying things or objects in the world is a
natural way of thinking about the world and its things. Objects are grouped
based on some differentiating attribute (Morelli, 2000, 60). Objects are inani-
mate things about which we have difficulty thinking that they send and re-
ceive message. However, objects are animate things in the world which do
naturally communicate and interact with one another by sending and receiv-
ing messages (Morelli, 2000, 7). Another text, for example, states that, “Ob-
ject is a broad term that stands for many things. For example, a student, a desk,
a circle, and even a mortgage loan can all be viewed as objects. Certain prop-
erties define an object, and certain behaviors define what it does (Liang, 2000,
142).”

For at least one text, the idea of object is a useful device for modeling
complexity in systems. “We can use the concept of objects to model quite
complicated real-world systems that consists of many different kinds of ob-
jects and many instances thereof” (Garside & Mariani, 2003, 30).

SPECIAL NOTION OF OBJECT
From an instructor’s, and student’s, points of view, the penultimate idea

to grapple with in O-O programming is the special notion of object. This idea
is dealt with in all of the texts, as would be expected. But, as perhaps, not
expected, the idea is not as well presented as it ought to be, in my estimation.
One text states that an object is “module” “encapsulating” a program’s behav-
ior (Morelli, 2000, 7). Another text states that an “object” has “data” and “ac-
tions” (Savitch, 2001, 210). An object is a complex entity (Savitch, 2001,
213) that has callable operations (Garside & Mariani, 2003, 30). Further at-
tempt at clarification is when a text states that an object has a “state,” i.e., its
data and procedures (Garside & Mariani, 2003, 29). The ultimate clarifying
note is that an object is a “noun” (Shelly, Cashman & Starks, 2001, JI.12).

One of the most repeated explanatory sentences in all the textbooks is
the one that simply states that an object is an instance of a class (Liang, 2000,
144; Morelli, 2000, 64; Liang , 2000, 143; Cornelius , 2001, 43, 50; Bishop,
1998, 23).

The most intriguing explanation is to be found in two texts. This is that
an object is a “black box” (Garside & Mariani, 2003, 30; Shelly, Cashman &
Starks, 2001, JI.12).

Another explanatory attempt views an object as a modeling piece, per-
haps like a Lego block. The interesting thing here is that the explanation leads
to the notion of a class as a category of objects sharing behavior. A class de-
fines shared behavior. So, instead of dealing with the idea of what an object is,
we move to what defines it. The text states that objects are “model elements”
(Anow & Weirs, 2000, 4).

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 1075

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

CLASSES AS CONSTRUCTS AND DEFINITIONS
One text states that classes are “constructs” defining objects by specify-

ing variables and methods (Liang, 2000, 143; Holzner, 1998, 15; Bishop, 1998,
80; Morelli, 2000, 63, 65).

Other texts discuss class as a definition encapsulating an object’s infor-
mation and behaviors (Morelli, 2000, 61, 78 ; Schildt, 2001, 130; Garside &
Mariani, 2003, 40; Savitch, 2001, 211-212).

One text states that a class is a “category” of objects, a way of classifying
common properties and behaviors (Shelly, Cashman & Starks, 2001, JI,12).

One text suggests that a class is set of elements or declarations about
information and processes (Anow & Weirs, 2000, 4; Hughes, 2002, 250).

Other texts discuss the notion of class as a way of defining “types” of
things, the things beings objects as instances of the class (Cornelius, 2001, 44,
xix, 23; Schildt, 2001, 130). This idea of a class-defining-new-type of entity
is an way of extending objects and the scope of Java (Adams, Nyhoff & Nyhoff,
2001, 70).

One text states that a class is an “abstract entity” or an “abstraction”
(Morelli, 2000, 77; Garside & Mariani, 2003, 43).

EXPLANATORY METAPHORS
An interesting aspect of the various texts studied here is that they all try

to describe the function, and perhaps, nature, of a class by certain metaphors.
These metaphors are blueprint, template, model, pattern, recipe, and cookie
cutter. While we all commonly understand what these metaphors say, they still
do not bring the instructor or the student any closer to the notion of class.

One metaphor for describing what a class is blueprint (Liang, 2000, 143).
Another author uses the same metaphor of blueprint and creates a synonym in
the form of the template metaphor (Morelli, 2000, 63; Garside & Mariani,
2003, 43). Another author uses the template metaphor (Schildt, 2001, 130).
Still, another text manages to use template, blueprint, and extend the meta-
phoric range to include pattern, and model. (Adams, Nyhoff & Nyhoff, 2001,
70). Some flip places; the main metaphor is template, followed by blueprint
(Morelli, 2000, 61). Another metaphor is the recipe (Liang, 2000, 143). A text
uses the model metaphor to describe a class; here a class is a representation
something. (Anow & Weirs, 2000, 2, 57). Another author uses a cookie cutter
to cookie metaphor (Holzner, 1998, 14-15).

CONCLUSION
The burden of explaining the natures, and not merely the syntax, of class

and object, and their relationship is the instructor’s in almost all cases to bring
things together coherently. The syntax for creating a class which defines ob-
jects is straight forward. But, it takes awhile to realize that not all classes
produce objects. Thus, the sense of the relationship between class and object
shows up in the discussion and understanding of how instance variables and
class variables function within a program. That is, what an instance variable is
and what a class variable is refers to what they do or can do in a program. The
same holds for the discussion of instance methods and class methods. Under-
standing how these two kinds of methods work, and are allowed to work, shows
up in understanding the relationship of class and object. It also shows up in the
understanding that not all classes produce instances, are used to produce in-
stances, or objects. This explanatory burden extends to the discussion of ab-
stract classes and to interfaces as they appear in the object-oriented world of
Java. And, this leads us to a consideration of the analysis and design of sys-
tems in an object-oriented manner. While we may experience, at the level of
detail, things and stuff we can turn into objects, we must ultimately think, or
program, the experienced objects as classes. We must do a classification turn,
and create the conceptual versions of the actual things, the actual objects. This
classifying turn is not discussed at all in any of the textbooks reviewed in this
essay.

REFERENCES
Adams, Joel, Nyhoff, Larry R. and Nyhoff, Jeffrey. (2001). Java: An introduc-

tion to computing. Upper Saddle River, NJ: Prentice Hall.
Anow, David M. and Weirs, Gerald. (2000). Introduction to programming

using Java: An object-oriented approach. Reading, MA: Addison Wesley
Longman.

Bishop, Judy M. (1998). Java gently. Harlow, England: Addison Wesley
Longman.

Cornelius, Barry. (2001). Understanding Java. Harlow, England: Pearson Edu-
cation.

Deitel, H.M. and Deitel, P.J. (2002). Java: How to program, 4e. Upper Saddle
River, NJ: Prentice Hall.

Garside, Roger and Mariani, John. (2003). Java: First contact, 2e. Pacific
Grove, CA: Brooks/Cole Thomson Learning.

Holzner, Steven. (1998). Java 1.2: In record time. San Francisco: Sybex.
Hughes, David. (2002). Fundamentals of computer science using Java. Bos-

ton: Jones and Bartlett.
Liang, Y. Daniel. (2000). Introduction to Java programming with Microsoft

Visual J++ 6. Upper Saddle River, NJ: Prentice Hall.
Morelli, Ralph. (2000). Java, Java, Java: Object-oriented problem solving

approach. Upper Saddle River, NJ: Prentice Hall.
Savitch, Walter. (2001). Java: An introduction to computer science and pro-

gramming, 2e. Upper Saddle River, NJ: Prentice Hall.
Schildt, Hebert. (2001). Java 2: The complete reference, 4e. Berkeley: Osborne/

McGraw-Hill.
Shelly, Gary B., Cashman, Thomas J. and Starks, Joy L. (2001). Java pro-

gramming: Complete concepts and techniques. Boston: Course Tech-
nology.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/concepts-class-object-presented-

selected/32250

Related Content

A Classification Scheme for Interpretive Research in Information Systems
Heinz K. Kleinand Michael D. Myers (2001). Qualitative Research in IS: Issues and Trends (pp. 218-239).

www.irma-international.org/chapter/classification-scheme-interpretive-research-information/28265

The Rhetoric of Corporate Governance Legality
Ben Tran (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 667-676).

www.irma-international.org/chapter/the-rhetoric-of-corporate-governance-legality/112380

Manipulator Control Based on Adaptive RBF Network Approximation
Xindi Yuan, Mengshan Liand Qiusheng Li (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-16).

www.irma-international.org/article/manipulator-control-based-on-adaptive-rbf-network-approximation/326751

On the Suitability of Soft Systems Methodology and the Work System Method in Some Software

Project Contexts
Doncho Petkov, Steven Alter, Olga Petkovaand Theo Andrew (2013). International Journal of Information

Technologies and Systems Approach (pp. 22-34).

www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-

software-project-contexts/78905

An Approach to Distinguish Between the Severity of Bullying in Messages in Social Media
Geetika Sarnaand M.P.S. Bhatia (2016). International Journal of Rough Sets and Data Analysis (pp. 1-20).

www.irma-international.org/article/an-approach-to-distinguish-between-the-severity-of-bullying-in-messages-in-social-

media/163100

http://www.igi-global.com/proceeding-paper/concepts-class-object-presented-selected/32250
http://www.igi-global.com/proceeding-paper/concepts-class-object-presented-selected/32250
http://www.irma-international.org/chapter/classification-scheme-interpretive-research-information/28265
http://www.irma-international.org/chapter/the-rhetoric-of-corporate-governance-legality/112380
http://www.irma-international.org/article/manipulator-control-based-on-adaptive-rbf-network-approximation/326751
http://www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-software-project-contexts/78905
http://www.irma-international.org/article/on-the-suitability-of-soft-systems-methodology-and-the-work-system-method-in-some-software-project-contexts/78905
http://www.irma-international.org/article/an-approach-to-distinguish-between-the-severity-of-bullying-in-messages-in-social-media/163100
http://www.irma-international.org/article/an-approach-to-distinguish-between-the-severity-of-bullying-in-messages-in-social-media/163100

