
1118 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
UML considers a pattern as a parameterized collaboration between objects
replaced by their actual values during the pattern application phase. However,
a design pattern differs from a simple design construct described by the
collaboration mechanism. A pattern does not express a fixed and accurate
structure. Rather, it defines a generic template whose different aspects can be
changed in different applications. In this paper, UML is extended to provide
the linguistic infrastructure that specifies design patterns. Most of the existing
pattern specification approaches consider a specific solution of the pattern
problem to describe the pattern. However, a pattern should be considered as
a family of solutions and applications of the pattern problem; since, an
unbounded number of concrete solutions and real applications may conform
to it. In this paper, four models are presented to describe the general
specifications of a pattern, its essence, its solutions and its instances,
respectively. The main construct used in these models is the role concept that
defines a family of classes. This paper also proposes a model to specify the
definitions related to this concept. This model uses three relations to define
the binding between the roles specification level and their implementation
level. These relations define the implementation of roles, satisfying the
structural relationships between roles and conforming to the behavioral
specifications of roles, respectively. Finally, the semantics of the proposed
models are precisely defined. This paper ends up presenting the definitions
needed to support the pattern-oriented features including the pattern
specification, application, validation, recognition and discovery.

1. INTRODUCTION
Design patterns are considered as an approach to encapsulate design ex-

periences in the software development. Each pattern expresses a relation be-
tween a certain context, a problem and a solution [1]. According to the object-
oriented software design, it can be viewed as a description of communicating
objects and classes that are customized to solve a general design problem in a
particular context [2]. Design patterns are mostly described in the form of a
specific solution using object-oriented diagrams.

The current version of the Unified Modeling Language [3] has defined a
mechanism to support design patterns. This mechanism considers a pattern as
a parameterized collaboration whose parameters are replaced by their actual
values during the pattern application phase. Two conceptual levels are pro-
vided in this mechanism. Collaboration diagrams are used to describe design
patterns and the collaboration usage notation is used to represent their appli-
cations.

The UML proposed mechanism has many problems in specifying design
patterns that some of them are discussed in [5]. Most of these problems origi-
nate from the fact that UML has not considered the design pattern as a distinct
language construct. However, there is a point that differentiates a design pat-
tern from a simple design construct described by the collaboration mecha-
nism. A design pattern does not express a fixed and accurate structure. Rather,
it defines a generic template whose different aspects can be changed in differ-
ent contexts.

Another problem is that collaboration diagrams are used as the tools of
the behavioral modeling of a system. Restricting pattern specifications to col-
laborations generally means that the modeling of a system does not need any
structural diagrams and behavioral diagrams are sufficient. Moreover, most of
the known pattern specification templates, such as the one presented in the

catalog of design patterns [2], consider distinct sections for the structural and
behavioral features.

Our goal in this paper is to extend UML to provide the linguistic infra-
structure for specifying design patterns. Most of the existing pattern specifica-
tion approaches, including the one proposed by UML, have a fundamental
weakness in their view. They consider a specific solution of the pattern prob-
lem to describe the pattern. Nevertheless, a pattern is not restricted to a par-
ticular solution; rather, unbounded number of concrete solutions and real ap-
plications may conform to it. It is better to consider a pattern as a family of
solutions and applications of the pattern problem. This view is compatible
with the definition of patterns in [6].

The mentioned view leads to a 3-layer structure presented in [7] to de-
scribe design patterns. The first layer describes the essence of a pattern. A
family of solutions implements this essence in the second layer. A family of
real applications in the third layer applies each of these solutions. Based on
this structure, we present four models that respectively describe the general
specifications of a pattern, its essence, its solutions and its applications. We
also introduce a mechanism to represent design patterns based on this ap-
proach.

The main construct used in these models is the role concept, which has
been introduced by the object-oriented methods such as OORam [9]. While a
class is a complete description of objects, a role is a specific view a client
object holds on the other object. In this paper, we propose a model that speci-
fies the required definitions related to this concept. We define the binding
between the roles specification level and their implementation level by three
relations. These relations define the implementation of roles, satisfying the
structural relationships between roles and conforming to the behavioral speci-
fications of roles, respectively.

Finally, we precisely define the semantics of the proposed models and
present the required definitions in order to the pattern-oriented features. These
features according to [8] include the pattern specification, application, valida-
tion, recognition and discovery.

2. UML PROPOSED MECHANISM
In order to support design patterns, UML defines two conceptual levels

that are discussed in this section.

2.1. Collaborations in UML
A collaboration is a description of a collection of objects that interact to

implement some behavior within a context [4]. A collaboration is defined in
terms of roles whose definitions has correspondence with the concepts dis-
cussed in the object-oriented methods such as OOram [9]. A role is a specific
view a client object holds on the other object. It is the client that defines what
constitutes the role [10]. An object can play different roles at different times,
and may also play more than one role at the same time [11].

Roles are specified using ClassifierRoles and AssociationRoles in UML.
A ClassifierRole represents a description of the objects that can participate in
an execution of the collaboration. ClassifierRoles are connected to each other
by means of AssociationRoles. A ClassifierRole does not specify the complete
features of an object; it only specifies the features required to play that role.
An object conforms to a ClassifierRole if it provides the required features of
the role. Thus, each ClassifierRole is a distinct usage or a restriction of some

A Metamodel for Specifying Design
Patterns in UML

Reza Jaberi and Mohammadreza Razzazi
Software Research and Development Laboratory

Computer Engineering Department
Amri-Kabir University of Technology
jaberi@b-et.com, razzazi@ce.aut.ac.ir

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 1119

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Classifiers in the context of a collaboration. These Classifiers are considered
as the base of that ClassifierRole. Instances of the base Classifiers or their
descendants can play that role.

2.2. Specifying Design Patterns
UML considers a design pattern as a parameterized collaboration be-

tween objects. A parameterized collaboration represents a design construct
that can be reused in various designs. The structural and behavioral aspects of
a pattern solution are modeled as a collaboration and the elements that must be
bound to the elements in a particular context are considered as its parameters.
According to the definitions of the collaboration elements in UML, the base
classifiers of each role are turned into parameters of the collaboration.

2.3. Applying Design Patterns
A design pattern is instantiated by supplying the actual classifiers for the

parameters in the pattern definition. Each instantiation yields a collaboration
among a specific set of classifiers in the model. The instantiation of a pattern
is showed by means of the collaboration usage notation. This notation is a
dashed ellipse containing the name of the pattern. A dashed line is drawn from
this symbol to each of the classifiers participating in the pattern and each line
is labeled with the role of the participant.

2.4. Existing Problems
The UML proposed mechanism to describe design patterns has many

problems that some of them are mentioned here and other ones are discussed
in [5].

An important point is that a collaboration defines the features needed for
an object to participate in an interaction with some other objects and specifies
how the interaction is done. Parameterized collaborations are as well used to
produce collaborations in different contexts by assigning different values to
the template parameters. Thus, these collaborations do not define any new
structural specifications. Restricting pattern specifications to collaborations
generally means that the modeling of a system does not need any structural
diagrams and behavioral diagrams are sufficient. It is quite clear that it is not
true and structural diagrams, such as class diagrams, are required to model a
system. Most of the known pattern specification templates, such as the one
presented in the catalog of design patterns [2], allocate distinct sections to
structural and behavioral features.

At last, most of the existing pattern specification approaches, including
the one proposed by UML, have a fundamental weakness in their view. They
consider a specific solution of the pattern problem to describe the pattern and
provide concrete diagrams intended to present the specific solution. However,
a pattern is not restricted to a particular solution and an unbounded number of
concrete solutions and real applications may conform to it. Patterns commu-
nity explicitly introduced the “used twice rule” as follows: A pattern is a pat-
tern, if and only if it has been used in more than one application [12]. Thus, a
pattern is never the result of a single analysis, but only of a cross-project analy-
sis. It is better to consider a pattern as a family of solutions and implementa-
tions of the pattern problem, which is compatible with the definition of pat-
terns in [6].

3. SELECTED STRUCTURE
This section illustrates the structure used to describe design patterns based

on the mentioned view.

3.1. Main Construct
A participant of a pattern defines the features required in the pattern

context. According to the definitions of the role concept discussed in the sec-
tion 2.1, it seems that the participants of a pattern description are more com-
patible with roles rather than classes. In fact, describing design patterns re-
quires a design construct that specifies a family of classes and the role concept
is more appropriate for this purpose.

Gamma et. al proposed the “program to an interface, not an implemen-
tation” principle in their catalog as follows: “Don’t declare variables to be
instances of particular concrete classes. Instead, commit only to an interface
defined by an abstract class.”[2] They note that this principle is a common
theme of the design patterns they describe. This principle is very close to the
role concept. Pattern community has also noted that roles are the true struc-

tural primitives upon which most patterns rely [13] and classes are only used
because a role modeling primitive is not yet established.

3.2. Family of Solutions and Applications
The 3-layer structure presented in [7] has been selected to describe a

design pattern as a family of solutions and real applications. Role and class
diagrams are used at different levels of abstraction in this structure. Role dia-
grams are specification-oriented, while class diagrams are implementation-
oriented. Both are needed, since a good design pattern should comprise a clear
problem solution as well as efficient ways of implementing it.

The first layer describes the essential properties of a design pattern with-
out any additional property and is common between all of its solutions. This
common core for all possible variants of a design pattern is called its essence
in [14]. Different variations of a pattern are special instances of its essence.
Role diagrams are used to present the essence of a pattern, since they do not
prescribe a certain class design, but only set up constraints in such a way that
the actual core of the solution is maintained.

A pattern specified by a role diagram can be made more concrete by a
class template, which in turn can be instantiated in numerous applications.
Thus, a role pattern specifies and abstracts from a family of class patterns,
which in turn specify and abstract from a family of concrete implementations.
The third level has another interpretation and based on the template presented
in [2], it can be considered as the samples of the pattern.

4. PROPOSED ROLE MODEL
The current specification of the role concept in UML has some problems

that are mentioned in this section and a model is proposed to solve them.

4.1. Current Problems
The most important problems of the UML role support are the following

three:
• Independent Definition: The UML specification does not allow a classi-

fier role to exist with no base classifier. Nevertheless, there are many
cases, such as the RUP method [15] and the design pattern specifica-
tions, in which roles are defined before classes and then classes are intro-
duced to implement them. So, roles should be defined independent of
base classifiers.

• Base Classifier: A classifier role has no feature from its own. It defines a
subset of those available in the base. In fact, roles in UML are mappings
between collaborations and their instances. However, implementing roles
is wider than this simple mapping idea and the references such as [16]
and [18] discuss different views in this area. So, it is better to define
roles with their own features and force classes to implement them.

• Association between Roles: An association role is a specific usage of at
most one base association and is defined dependent on that. However, it
is possible that some different and general associations satisfy the condi-
tions stated in that usage. So, association roles should be independently
defined and satisfying them should be considered a distinct concept as
the implementation of roles.

4.2. Revised Generalization Model
The UML specification defines the inheritance relationship using an

instantiable metaclass named Generalization [3]. In order to get all of the
parents of a given element, all of the Generalization instances must be found
in which the mentioned element is defined as the specialized one. Such a ques-
tion is much needed in our proposed models. Accordingly, another model is
taken from [17] and [19] to define the inheritance relation. This model defines
a new relation named generalizes by which a class or a role specifies the classes
or the roles inherited from.

4.3. The RoleModel Package
A package named RoleModel is introduced to solve the mentioned prob-

lems. It is shown in figure 1 and is the linguistic infrastructure that specifies
the role concept, the structural relationships between roles and the behavioral
specifications of roles.

A new metaclass named Role is defined to specify roles. Each role has its
own features and can be defined independent of its implementing classes. The
implements relation specifies the relationship between a role and the imple-

1120 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

menting classes. This relation relates classifiers to the roles that can be played
by their instances.

The structural relationships between roles are defined using associations
between them. An association role is specified independent of its base by means
of the AssociationUsage metaclass. The scope of an association is wider than
that of its usage in an association role. A new relation, named satisfies, relates
an association to its specific usage.

Each communication between two roles is done by means of sending a
message between them and is specified by the RoleMessage metaclass. An
interaction between a set of roles involves a set of communications among
them to carry out a particular purpose and is specified by the RoleInteraction
metaclass. It imposes some behavioral constraints on the implementing classes.
Its implementation by an actual interaction between the implementing classes
is specified using a new relation named conforms.

5. PATTERNMODEL PACKAGE
This section extends the UML metamodel to provide the linguistic infra-

structure that specifies design patterns based on the approach discussed in the
previous sections. The proposed models are contained in a package named
PatternModel.

5.1. Pattern Model
Figure 2 shows the model suggested to describe the specifications of

design patterns. It is based on the features presented in the catalog of design
patterns [2]. The features such as the role model, solution, samples and related
patterns are determined by the relationships between the model elements. The
features such as the name, intent, motivation, applicability and consequences
are considered as the attributes of the pattern.

Pattern roles communicate with each other by sending messages speci-
fied by the PatternRoleMessage metaclass. A pattern role model contains some
interactions specified by the PatternRoleBehavior, which define the sequences
of messages and the control flow of the role model.

5.3. Pattern Solution Model
Each pattern has some solution models that implement the pattern role

model and figure 4 shows the model required for describing them. A pattern
solution model is specified by the PatternSolution metaclass and involves some
participants specified by the PatternClass metaclass. As mentioned in the sec-
tion 3, these participants are not true classes, they are roles that implement the
roles defined in the pattern role model. They are called classes because their
tendency is towards the implementation.

The behavioral features of a pattern class are of two kinds named Tem-
plate and Hook methods in [20]. They relate to some pattern core functionality
and application specific functionality, respectively. Template methods have
specific implementations and provide a general skeleton for the pattern behav-
ior. The functionality of this skeleton is changed in particular contexts by hook
methods. Hook methods are called in the implementation of template methods
and are defined when the pattern is applied.

Pattern classes are related to each other using some relationships speci-
fied by the PatternRelationship metaclass. The establishment of these rela-
tionships when applying the pattern depends on how its connections become
visible and includes these kinds: association relationship, method parameter,
local scope, global scope and the class itself. The first type is a static relation-
ship in the application model and the others are transient relationships that
provide a path for sending message. Accordingly, the static relationships of
the pattern role model must be satisfied by an association type relationship in
the solution model; however, the other relationships of the role model can be
satisfied using each type of the relationships in the solution model.

The behavior of a pattern solution is described by means of some inter-
actions specified by the PatternBehavior metaclass. Each interaction involves
some messages specified by the PatternMessage metaclass that are passed
between the pattern classes to carry out a specific pattern purpose. Each of
these interactions must conform to one of the interactions in the pattern role
model.

There is a difference between the structural and the behavioral constraints
on a solution. The solution structure must satisfy all of the structural con-
straints somehow, but all of the solution behaviors must conform to one of the
behavioral constraints. The structure of a role model makes it possible to take
place different behaviors and the behavioral specifications specify the valid
ones between them. The pattern solution must present some valid behaviors
and not necessarily all the valid behaviors.

5.4. Pattern Instance Model
A pattern is instantiated in a particular application by implementing one

of its solutions. Figure 5 shows the required model to describe the instantiation

Figure 1: The structure of the RoleModel package

Figure 2: Pattern model

Figure 3: Pattern role model

5.2. Pattern Role Model
Each pattern has a role model that defines the pattern essence and figure

3 shows the required model to describe it. A pattern role model is specified by
the PatternRoleModel metaclass and involves some roles specified by the
PatternRole metaclass. These roles must be implemented by the classes par-
ticipating in the pattern solution model.

Pattern roles are connected to each other using some relationships speci-
fied by the PatternRoleRelationship metaclass. Some of these relationships
indicate the static features of roles and some of them exist only in the context
of the pattern to provide a behavioral communication path.

Figure 4: Pattern solution model

Information Technology and Organizations 1121

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

6.3. Conforming to Behavior of Roles

The definition indicates that the sender and the receiver must provide
the path required to send the message. They must also implement the sender
and the receiver roles, respectively. The executed action upon receiving the
message must be the same.

The definition says that a subsequence of the class messages must con-
form to the sequence of the role messages. A role model indicates a general
behavior and a high-level control flow that can be more complex in an actual
application.

6.4. Implementing a Role Model
Before defining the implementation of a role model, the following defi-

nitions are considered for class models and role models:

Now, the implementation of a role mode is defined as below:

Namely, the classes of the class model must implement the roles of the
role model, each relationship of the role model must be satisfied by one of the
relationships of the class model and each interaction of the class model must
conform to one of the interactions of the role model.

6.5. Instantiating a Design Pattern

Figure 5: Pattern instance model

of a pattern in an application model. A pattern instance is specified by the
PatternInstance metaclass. An application model involves some classifiers
that implement pattern classes.

Application classifiers are related to each other by means of some asso-
ciations that can be static or dynamic. The static ones are relationships that
exist outside the pattern context too, and satisfy the pattern relationships whose
types are specified as association in the pattern solution model. The others are
transient relationships that are only established in the pattern context and can
be used to satisfy the other kinds of the pattern relationships.

The behavior of the instances of application classifiers is specified by
some interactions between them. Each interaction must conform to one of the
pattern solution behaviors.

Further details discussed in the pattern solution model about implement-
ing roles, satisfying structural relationships and behavioral conformance are
also applicable here and we avoid repeating them.

6. SEMANTIC DEFINITION
This section defines the semantics of the proposed models. At first, the

conditions required to implement a role model are expressed and at the end of
this section, precise definitions are presented for instantiating a design pat-
tern.

6.1. Implementing Roles

The attributes and the operations of the role must be a subset of those of
the class. The class must also be able to implement the generalized roles of the
role.

6.2. Satisfying Association Roles

The definition says that the corresponding class of the class connection
or one of its subclasses must implement the corresponding role of the role
connection and the navigability and cardinality constraints of the association
between classes must be saved in its specific usage in the role model.

Definition 1: Implementing a Role
A class�C implements a role R, if and only if

? allAttributes(R) ⊆ �allAttributes(C)
? allOperations(R) ⊆ �allOpertions(C)
? R�parent ⊆ (C.role ∪ C.parent.role)

Definition 2: Implementing a Set of Roles
A set of classes�CS implements a set of roles RS, if and only if
�� ∀ R ∈ RS, ∃ C ∈ CS where C implements R

Definition 3:�Satisfying a Role Connection
A connection�CC�to an association between classes�satisfies a connection RC to an association between
roles, if and only if
- CC.type implements RC.type
������OR
������∃ C ∈ CC.type.child where C implements RC.type
- RC.isNavigable�⇒ CC.isNavigable
- RC.cardinality�⊆ CC.cardinality

Definition 4:
�

Satisfying a Set of Role Connections
A set of connections CCS to an association between classes satisfies a set of
connections RCS to an association between roles, if and only if

? ∀ RC ∈ RCS, ∃? CC ∈ CCS where CC satisfies RC
? ∀ CC ∈ CCS, ∃? RC ∈ RCS where CC satisfies RC

Definition 5:
�

Satisfying an Association Role
An association between classes�CR satisfies�an association between roles RR, if and
only if
�� CR.connection satisfies RR.connection

Definition 12:
�

Pattern Solution
A pattern solution model�PS�is a solution of a design pattern�P, if and only if

? <PS.participant, PS.relationship.nonTransient, PS.interaction> implements
 <P.roleModel.participant, P.roleModel.relationship.static,
P.roleModel.interaction>

Definition 6:
�

Conforming to a Message
A message�CM�from a behavioral model of classes conforms to a message RM from a
behavioral model of roles, if and only if

? ∃ CR ∈ allAssociations(CM.sender) ∩ allAssociations(CM.receiver),
������∃ RR ∈ allAssociations(RM.sender) ∩ allAssociations(RM.receiver) where
������

CR satisfies RR
? CM.sender implements RM.sender
? CM.receiver implements RM.receiver
? CM.action = RM.action

Definition 7:
�

Conforming to a Message Sequence
A sequence�of messages nCMCMCM ,...,, 21 sent in a behavioral model of classes

�

conforms�to a sequence of messages mRMRMRM ,...,, 21 �

sent in a behavioral model of
roles, if and only if

? n = m
? ∀ i ∈ {1..n}, iCM conforms iRM

Definition 8: Conforming to an Interaction Role
An interaction�CI�from a behavioral model of classes�conforms�to an interaction RI
from a behavioral model of roles, if and only if
�� ∃ MS ⊆ CI.message where MS conforms RI.message

Definition 9: Class Model
A set of classes�CS�along with their structural relationships in a set�CRS�and their
behavioral specifications in a set�CIS is considered as a class model represented as
<CS, CRS, CIS>. Class model is also known as application model.

Definition 10: Role Model
A set of roles�RS�along with their structural relationships in a set�RRS�and their
behavioral specifications in a set�RIS�is considered as a role model represented as <RS,
RRS, RIS>.

Definition 11:
�

Implementing a Role Model
A class model�CM<CS, CRS, CIS> implements�a role model RM<RS, RRS, RIS>, if
and only if

? CS implements RS
? ∀ RR ∈ RRS, ∃ CR ∈ CRS, CR satisfies RR
? ∀ CI ∈ CIS, ∃ RI ∈ RIS, CI conforms RI

In this case, the class model can be considered as an instance of the role model.

1122 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

This definition indicates that the given solution model must implement
the pattern role model.

This definition indicates that the given instance model must implement
one of the solutions of the design pattern. The above definitions implicitly
consider the non-static relationships of the pattern role model and the transient
relationships of the pattern solution model as one of the message conformance
conditions during the behavioral checking of the solution and the instance,
respectively.

7. PATTERN-ORIENTED FEATURES
This section presents the required definitions in order to support pattern-

oriented features. It uses the definition of a pattern instance given in the previ-
ous section. According to [8], pattern-oriented features include specification,
application, validation, recognition and discovery.

The last definition is based on the “used twice rule” that indicates a
pattern must be used in more than one application.

8. CONCLUSION
In this section, the proposed models are evaluated and the benefits of the

presented approach regarding the UML proposed mechanism are mentioned.
1. As mentioned, collaborations are behavioral modeling tools. Accordingly,

the structural specifications of design patterns are not explicitly consid-
ered in UML. The proposed role and pattern models consider the struc-
tural specifications as distinct parts.

2. A generalization relationship in a collaboration does not necessarily force
such a relationship between the base classifiers. It only indicates that the
child role inherits the parent features. The proposed role and pattern mod-
els explicitly consider the generalization between participants.

3. UML assumes that the bases of association roles can be automatically
deduced from the existing associations among the corresponding base
classifiers when the pattern is bound. The proposed role model considers
satisfying association roles as a distinct concept. The proposed pattern
model defines different kinds of satisfying a pattern relationship. It also
considers the usage of derived associations for satisfy a relationship.

4. Classifier roles are not allowed in UML to have any features of their
own. They only repeat some parts of the features of their bases. The
proposed role model drops this restriction and gets rid of the base alto-

gether. Roles are allowed to define the needed features within themselves.
5. UML does not define how the pattern interactions are involved in the

binding process. The proposed role and pattern models consider the in-
teractions as a new kind of constraint. The actual participants must con-
form to these behavioral constraints.

6. In the UML proposed mechanism, the existing elements of the applica-
tion are mapped on the elements of the pattern. Applying design patterns
is more than this simple mapping idea and may generate or modify some
elements. The proposed role model defines a role as a general description
for a family of classes and there is no need to a preexisting structure.

7. The essence of a pattern can not be described by the UML proposed
mechanism. The proposed pattern model considers a distinct level for
the pattern essence and describes it using role diagrams.

8. UML does not support pattern-oriented features appropriately. It has only
considered pattern specification and application. Pattern-oriented fea-
tures, including specification, application, validation, recognition and
discovery are well supported in this paper.

REFERENCES
[1] Christopher Alexander, The Timeless Way of Building, Oxford

University Press, New York, 1979.
[2] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, De-

sign Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, 1995.

[3] UML Revision Task Force, OMG Unified Modeling Language
Specification v. 1.3, Document ad/99-06-08, Object Management Group, June
1999.

[4] Grady Booch, Ivar Jacobson, James Rumbaugh, The Unified Mod-
eling Language Reference Manual, Addison-Wesley, 1999.

[5] Gerson Sunyé, Alain Le Guennec, Jean-Marc Jézéquel, “Design
Patterns Application in UML”, ECOOP’2000, LNCS 1850, pp. 44-62, 2000.

[6] Ralph Johnson, “An Introduction to Patterns”, Report on Object
Analysis and Design, vol. 1, no.1, SIGS Publications, 1994.

[7] Dirk Riehle, “Describing and Composing Patterns Using Role Dia-
grams”, Proceedings of the 1996 Ubilab Conference, pp. 137-152, 1996.

[8] Amnon Eden, Yoram Hirshfeld, “Towards a Formal Foundation for
Object Oriented Architecture”, Proceedings The 3rd ACM SIGSOFT Work-
shop on Formal Methods in Software Practice, 2000.

[9] T. Reenskaug, P. Wold, O. Lehne, Working with Objects, Green-
wich, Manning, 1996.

[10] B. Kristensen, K. Osterbye, “Roles: Conceptual Abstraction Theory
and Practical Language Issues”, Proceedings of Theory and Practice of Ob-
ject Systems, 1996.

[11] Barbara Pernici, “Objects with Roles”, Proceedings ACM-IEEE
Conference of Office Information Systems (COIS), 1990.

[12] J. Vlissides, M. Linton, “Unidraw: A Framework for Building Do-
main-Specific Graphical Editors”, ACM Transactions on Information Systems
8, 3, pp. 237-268, 1990.

[13] Frank Buschmann, “Falsche Annahmen (Teil 2)”,
OBJEKTspektrum, pp. 84–85, 1998.

[14] Amnon Eden, “Giving “The Quality” a Name”, Journal of Object
Oriented Programming, Guest column, SIGS Publications, 1998.

[15] Grady Booch, Ivar Jacobson, James Rumbaugh, The Unified Soft-
ware Development Process, Addision-Wesley, 1999.

[16] Friedrich Steimann, “On the Representation of Roles in Object-
Oriented and Conceptual Modeling”, Proceedings of Data & Knowledge En-
gineering 35, pp. 83-106, 2000.

[17] Friedrich Steimann, “A Radical Revision of UML’s Role Concept”,
Proceedings of «UML» 2000 - The Unified Modeling Language, Third Inter-
national Conference, 2000.

[18] Martin Fowler, “Dealing with Roles”, PLoP’97, Conference Pro-
ceedings, 1997.

[19] Bernd-Uwe Pagel, Mario Winter, “Toward Pattern-Based Tools”,
PLoP’96, Conference Proceedings, 1996.

[20] Wolfgang Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, 1995.

Definition 13: Pattern Instance
A pattern instance model�PI is an instance of a design pattern P, if and only if

? ∃ PS ∈ P.solution where
�����<PI.classifier, PI.association.nonTransient, PI.interaction> implements
�����<PS. Participant, PS.relationship.nonTransient, PS.interaction>

Definition 14:�Pattern Specification
A design pattern is�specified by a pattern model P, a pattern role model RM, a set of
pattern solutions PSS, a set of pattern instances PIS and a set of related patterns RPS.
It is represented as <P, RM, PSS, PIS, RPS>.

Definition 15:�Pattern Application (Instantiation)
Given a design pattern�P, an application generates or modifies a pattern instance PI
such that PI is an instance of P based on definition 13.

Definition 16:�Pattern Validation
Given a design pattern�P�and a pattern instance PI, a validation answers the question
whether PI is an instance of P based on definition 13.

Definition 17:�Pattern Recognition
Given a design pattern�P�and an application model M, a recognition gives all pattern
instances PI in M which are instances of P based on definition 13.

Definition 18:�Pattern Discovery
Given a set of application models�MS�and a set of known patterns�PS, a discovery is a
search for pattern instances S<P, RM, PSS, PIS> such that

? S�∉? PS
? PIS is a set of submodels of MS having at least two members and contains the

instances of P based on definition 13.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/metamodel-specifying-design-patterns-

uml/32267

Related Content

Evaluating the Degree of Trust Under Context Sensitive Relational Database Hierarchy Using

Hybrid Intelligent Approach
Manash Sarkar, Soumya Banerjeeand Aboul Ella Hassanien (2015). International Journal of Rough Sets

and Data Analysis (pp. 1-21).

www.irma-international.org/article/evaluating-the-degree-of-trust-under-context-sensitive-relational-database-hierarchy-

using-hybrid-intelligent-approach/122776

Chronic Condition Management Using Remote Monitoring and Telehomecare
Maximillian E. Stachura, Ellen B. Bolch, Katherine F. Pietteand Joseph F. Ebberwein (2015). Encyclopedia

of Information Science and Technology, Third Edition (pp. 3318-3331).

www.irma-international.org/chapter/chronic-condition-management-using-remote-monitoring-and-telehomecare/112763

The Complexity of Finding Information in Collaborative Information Systems: Cognitive Needs
Aida Varelaand Marilene Lobo Abreu Barbosa (2012). Systems Science and Collaborative Information

Systems: Theories, Practices and New Research (pp. 87-120).

www.irma-international.org/chapter/complexity-finding-information-collaborative-information/61287

Movie Analytics for Effective Recommendation System using Pig with Hadoop
Arushi Jainand Vishal Bhatnagar (2016). International Journal of Rough Sets and Data Analysis (pp. 82-

100).

www.irma-international.org/article/movie-analytics-for-effective-recommendation-system-using-pig-with-hadoop/150466

IS Design Considerations for an Innovative Service BPO: Insights from a Banking Case Study
Myriam Raymondand Frantz Rowe (2016). International Journal of Information Technologies and Systems

Approach (pp. 39-56).

www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884

http://www.igi-global.com/proceeding-paper/metamodel-specifying-design-patterns-uml/32267
http://www.igi-global.com/proceeding-paper/metamodel-specifying-design-patterns-uml/32267
http://www.irma-international.org/article/evaluating-the-degree-of-trust-under-context-sensitive-relational-database-hierarchy-using-hybrid-intelligent-approach/122776
http://www.irma-international.org/article/evaluating-the-degree-of-trust-under-context-sensitive-relational-database-hierarchy-using-hybrid-intelligent-approach/122776
http://www.irma-international.org/chapter/chronic-condition-management-using-remote-monitoring-and-telehomecare/112763
http://www.irma-international.org/chapter/complexity-finding-information-collaborative-information/61287
http://www.irma-international.org/article/movie-analytics-for-effective-recommendation-system-using-pig-with-hadoop/150466
http://www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884

