
Innovations Through Information Technology 53

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A Collaborative, Real-Time
Insert Transaction for a Native

Text Database System
Thomas B. Hodel-Widmer

University of Zurich, Department of Information Technology, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
hodel@ifi.unizh.ch

Klaus R. Dittrich
University of Zurich, Department of Information Technology, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

dittrich@ifi.unizh.ch

ABSTRACT
For a large-scale document management environment, we often make
local copies of remote data sources. However, it is often difficult to
monitor the sources in order to check for changes and to download
changed data items to the copies. In this paper, a insert transaction for
a collaborative editor that stores its data natively in a database in order
to make all changes immediately available to all users, will be presented.
One of the most significant challenges we meet in building real-time
cooperative editing systems, is distributed concurrency control. Therefore
we focus on a concurrency control schema for a database based
collaborative editor.

INTRODUCTION
Today, business (customer, product, finance, etc.) and text data

(documents) are treated rather differently in computerized systems.
Very often, word processing documents are stored somewhere within a
confusing file structure with an inscrutable hierarchy and low security.
On the other hand, operational and decision supporting data are stored
in databases. The infrastructure and the data are highly secure, tailored
towards multi-user operation and available to several other tools to build
reports, content and knowledge.

Our idea is to use a similar philosophy for texts. We constructed
a word processing concept with collaboration functionalities such as
simultaneous writing in a shared document, automatic versioning, a
document centered undo function, an access control concept based on
users and roles and a copy-and-paste function with memory features for
automatic updating. Therefore, we are striving for the storage of texts
in a database in a native way that enables the above mentioned
functionalities. By native, we mean that text is stored in a structured way
in the database, so that database transactions can be applied to it.

Shortcomings of document processing, state of the art in document
processing and advantages for our database approach as well as a concept,
prototype and performance evaluation of the mentioned transaction in
this article are described in [Hodel 2003].

NATIVE TEXT DATABASE
Historically, text has been perceived as requiring a different set of

technologies for retrieval and management than structured data. This
perception has not only burdened organizations with multiple storage
systems and development environments but has also stood in the way
of effectively integrating all organization information assets into a
database.

We are convinced that word processing applications should store
data in a ‘native’ way in a database and then benefit from the advantages
of a database management system like querying the content, restricting
access, persistent storage, inference and rule-based actions, multiple user
interfaces, representing complex relationships among data, integrity
constraints, backup and recovery, and much more.

Based on the ideas mentioned above and resulting constraints we
developed a character based storage system. Such a data schema has big
advantages in fulfilling these requests. The main question was how to
represent the order of the characters.

The best model, based on our demands, is to implement a text
document as a ‘ring of double linked fields’ (see Figure 1). Based on these
reflections, a ‘native text database schema’ describes a text as a set of
double linked fields. Each character is stored as Unicode and identified
by the object ID that is indexed by the database. Each object contains
a reference to the next character, the Before property and a reference
to the previous character, the After property.

CONSISTENCY PROBLEMS
In this section we will examine text transactions for our native text

database if more than one user is editing a document at the same position
and will be explained through four problem situations, based on the
possible combinations of insert and delete operations. The problem
situations must be examined one by one since they can cause hidden
problems.

Problem 1: Inserting a Character Simultaneously at the
Same Position

Editor A (see Figure 2) inserts character X at the third position.
The operation of editor A is received and processed correspondingly by
the database. Right after that, the update process is activated. Before
editor B gets informed about this insert, editor B has inserted character
Y at the same position. This operation is also processed correctly and

Figure 1: Data representation in the editor and database

Object1

Editor (Client)
Image

Objec t2

Master Model

Database (Server)

T0

E1

N2

D3

A4

120

321

332

343

184

195X5

12 10 32 84

18 34 19 65

19 18 22 88

32 12 33 69

33 32 34 78

34 33 18 68

ID -Array
C harac ter-

Array

C lient-D ocum ent -M odel

C C har-Instances

ID After Before C V

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,
Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

54 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

leads to an update process. Within the context of such a scenario,
consistency problems arise. The models of editor A and the database
correspond to the order of the operations carried out. The model in
editor B, however, is not consistent to all other models. The problem
is caused because the order of the operations within editor B is distorted.
Character Y is inserted after character X in the database. Within editor
B, character Y is inserted before character X. Editor B processes the
operations in another order than the database system. This is possible
because this approach does not guarantee the total causal order of the
operations.

Problem 2: Deleting the Same Character Simultaneously
Editor A (compare Figure 2) deletes character C by transferring the

ID of this character and informs the database system about this
operation. After the character was deleted successfully, the update
process is activated. Before editor B could be updated, editor B has
deleted the same character C. Thus, the database system no longer knows
ID 15 of the character any more. The delete operation of editor B
therefore leads to a database error. In the meantime the update process
has propagated the operation of editor A, and deleted character C with
ID 15 in all other editors, including the editor B. The problem is being
solved by itself.

Problem 3: Simultaneously Inserting and Deleting at the
Same Position

Editor A (compare Figure 2) inserts character X, and the database
system gets informed about this operation. Character X was saved in the
database, and the update process informs the other editors about this
operation immediately.

In the meantime, editor B has deleted the reference character C.
The update process for inserting X uses character C with the ID 15 as
a reference. Since editor B has just deleted character C, the update report
of editor B leads to problems. Editor B does not know at which position
the new character has to be inserted. These problems arise as well from
the exchange of the operation order. Unlike problem 1 and 2, this
situation leads to an error in the editor.

Problem 4: Simultaneously Deleting and Inserting at the
Same Position

This scenario is nearly identical to the previous situation with the
difference being that a character is deleted first and then a character is
inserted. But this difference leads to a completely different problem.
Character X (compare Figure 2) with the reference character C is no
longer in the database. This has the consequence that the database will
send B a related error message back to the editor since the operation fails.

Summary of Consistency Problems
Problems 2 and 4 are relatively simple to solve since an error

message is automatically generated by the database system. Problems 1
and 3 can be explained by the missing total casual order of the operations.
Without additional actions, inconsistent documents within editors are
created in such situations.

In the next sections various actions which try to solve these
problems are discussed. One possibility is to prevent text manipulations
in the same position at the same time. A second possibility is to guarantee
the total causal order of the operations by such situations. This can be
done by implementing certain algorithms in the editor and in the
database system.

APPROACHES FOR FULL CONCURRENCY SUPPORT
Collaborative real-time groupware tools often use the operational

transformation [Ellis 1989] [Sun 2002] approach to guarantee consis-
tency of shared data. Algorithms like aDOPTed [Ressel 1996], GOTO
[Sun 1998], SOCT 2,3,4 [Suleiman 1998] [Vidot 2000] and TreeOPT
[Ignat 2003] were developed but can not be used in our native text
database, because we do not have the position of a character within a text
in the database (compare Figure 1 and Figure 2). Instead of that, we know
the object ID of a character. Based on this situation we search in this
section for a full concurrency supported solution.

Exclusive Lock Approach
The locking approach is a pessimistic one because it prevents the

described problem situations in advance. Today’s database systems offer
this locking mechanism. Since the update process runs in the database
completely independently of the editor processes, these locking mecha-
nisms simply cannot be used, since in general it is not allowed to create
locks over overlapping processes. The advantage of solving the problem
within the database alone lies there, that different applications can
access this database and profit from this supply.

In principle, the lock can be set at two different times. An operation
arises by moving the cursor within the text. The current character (i.e.
the one at the cursor) is then locked, to be on the safe side. This indicates
a considerable load on the system since this operation occurs relatively
often. A better time to invoke this lock is before an insert, delete or
change operation is called. If such an operation arises, an exclusive lock
must be requested for the corresponding character first.

The situation corresponds to problem 1. Two editor applications
insert a character at the same position at the same time. This situation
has led, as pointed out, to an inconsistent system. Using locking
mechanisms can prevent such situations.

Editor A (compare Figure 2) inserts character X at the position two
behind character C. This operation is passed on to the database system.
First, it tries to set a lock on character C, the reference character. If this
is successful, the character is inserted in the database and afterwards the
update process is triggered. At the same time, editor B tries to insert
character Y at the same position. Editor B reports this insert operation
to the database system. The database system now also tries to lock the
reference character C, but this character is already locked. This is the
reason for stopping this procedure. The lock on the reference character
C is canceled as soon as the update process has updated all editors and
these have inserted the new character in its editor document model.

It can be shown that with such a mechanism, problem 3 can also be
solved. The system can be designed so that all consistency violation
requests can result in an error message on the database side.

The update process for the exclusive lock approach in detail
The unlock process was not discussed precisely enough in the

previous part. The statement made silently assumes that the update
process in the database system knows when the informed editors have
updated their client document models. Then afterwards, the update
process unlocks the reference character.

Two scenarios are possible. Two threads are active in the editor.
The connection thread waits for incoming reports of the update process
and passes these on to the update thread which analyzes the messages
and updates the client document model correspondingly.

For scenario 1, the update is completed for the database update
process after sending the update report successfully to the update process
of the editor. But the connection thread within the editor must read the
message from the buffer and arrange the update of the client document
model. The update is taken care of by its own update thread for the client
document model. The update is actually finished at this time.

Figure 2: Insert at same position

Innovations Through Information Technology 55

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Scenario 2 is the ‘correct’ process, at which the update thread
informs the update process running in the database system after a
successful update of the client document model. Only after the update
process has received the confirmation from the editor is the lock
canceled.

From this point of view, locking with scenario 1 does not com-
pletely solve problem 1, because there is a lack. After the update process
has sent the message successfully, it continues to work and cancels the
lock on character C (compare Figure 2) in the next step. But this does
not mean that the update in the client document model is completed at
this time yet. If character Y is inserted before the update of the client
document model is done, since the lock was already deleted, problem 1
arises. If the insert process is very fast, it is theoretically possible that
character Y is inserted before X in the client document model. A solution
would be that the update process waits for a confirmation, according to
scenario 2. The same statements could also apply to the problem 3 under
the acceptance of scenario 1.

From a theoretical point of view, it is clear that the update process
according to scenario 2 must be implemented since this prevents
problems 1 and 3 from arising. However, the implementation of the
update process scenario 2 turns out to be substantially difficult, as shown
below.

Update process according to scenario 1
Editor A (compare Figure 2) inserts character X in the shown text

document at the second place. Before the client document model of
editor A is updated, the database system is informed about the insert of
character X, by sending the new character; in this example X, and the
ID 15 of the reference character C. The responsible process (called DB-
Process for editor A) for the connection in the database system accepts
this message and locks character C first. If character C can be locked
successfully, character X is inserted in the ring of double linked fields.
The new character is saved in the database and all editors, who have this
document opened, must be informed about this insert operation now.

The DB process for editor A informs the update process first about
this insert operation. The update process represents an independent
process and works parallel to the other database processes.

After informing the update process, the DB process for editor A
informs the operation triggering editor A and returns the ID of the newly

inserted character X as parameter. Then the operation triggering editor
A updates its own client document model. The update process informs
all editors (except the operation triggering editor A) which have also
opened this document at this time, by sending an update message to the
corresponding editors. The update message contains the new character
as well as the ID of the newly inserted character X, and the ID of the
reference character. This information is enough for inserting the new
character correctly in the client document model. After informing all
editors successfully, the update process unlocks character C without
waiting for confirmation by the editors.

Update process according to scenario 2
Here the update process does not immediately unlock the reference

character C (compare Figure 2) after informing all editors successfully.
In this scenario, the update process waits until all editors send a
confirmation back that the update has successfully been brought to the
client document model. After all confirmation messages arrive in the
database system, the reference character is unlocked.

CONCLUSION OF THE UPDATE PROCESS FOR THE
LOCK APPROACH

Problems 1 and 3 can be solved with the lock approach by
implementing the update process according scenario 2. Then, full
consistency can be guaranteed. The disadvantage is, as illustrated, a
considerable loss of performance. In addition, a different situation must
be captured, like e.g. an editor is shut down before a confirmation could
be sent. If this situation is not recognized, then the update process
cannot cancel the lock for lack of confirmations received. If the update
process according scenario 1 is used, the performance of the system is
much better, but problem 1 and 3 can still occur.

Validation Approach
The validation approach represents another possibility to solve

these problems. It detects and prevents such situations. Before a new
character is saved or deleted in the database, the database system
validates the operation. An additional parameter within the send
message is used for this validation. Validation means that the database
system checks whether the client document model and the master model

TSTART

Set sc = $$$OK

$$$ISOK(sc)?

Set length = $Length(characterValues)

Y

&sql(select After into :prevCharId from cache.CChar where Id =
:nextCharacterId)

N

%ROWCOUNT = 1?

set sc = 0

N

Lock ^cache.CListD(prevCharId)

Y

previousCharacterId '=0? prevCharId '=
previousCharacterId?

set sc = 0

Y

Y

characterId = 0?

sc'=0?

endId = $Increment(^MyCounter, length)
startId = endId - (length - 1)

startId = characterId
endId = characterId + (length -1)

sc'=0?

Y

Y

N

$$$ISOK(sc)?

For i = 1:1:length

Y

$$$ISOK(sc)?

N

Set newCharacterId = startId + (i - 1)
Set newCharacterValue = $ASCII(characterValues,i)

length = 1?

N

Y

&sql(insert into cache.CChar (CListId, CharacterValue, After,
Before) values (:newCharacterId, :newCharacterValue, :prevCharId,

:nextCharacterId))
Y

i = 1?

Set newNextCharacterId = newCharacterId + 1

&sql(insert into cache.CChar (CListId, CharacterValue, After, Before)
values (:newCharacterId, :newCharacterValue, :prevCharId,

:newNextCharacterId))

Y

i = length?

Set newPreviousCharacterId = newCharacterId - 1

&sql(insert into cache.CChar (CListId, CharacterValue, After, Before)
values (:newCharacterId, :newCharacterValue, :newPreviousCharacterId,

:nextCharacterId))

Y

Set newPreviousCharacterId = newCharacterId - 1
Set newNextCharacterId = newCharacterId + 1

&sql(insert into cache.CChar (CListId, CharacterValue, After, Before) values (:newCharacterId,
:newCharacterValue, :newPreviousCharacterId, :newNextCharacterId))

N

N

N

%ROWCOUNT'=1?

set sc = 0

Y

N

$$$ISOK(sc)?

<=

&sql(update cache.CChar set Before = :startId
where Id = :prevCharId)

%ROWCOUNT'=1?

set sc = 0

Y

Y

&sql(update cache.CChar set After = :endId where
Id = :nextCharacterId)

%ROWCOUNT'=1?

set sc = 0

Y

$$$ISOK(sc)?

Y

N

$$$ISOK(sc)?

TROLLBACK
Set startId = sc

TCOMMIT
Do InformInsert ĉache.ServiceRoutines(...)

N

Y
Quit startId

N

N

N

Y

N

N

N

New %ROWCOUNT

Lock ĉache.CListD(nextCharacterId)

Lock

N

Figure 3: Insert Transaction

56 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

are consistent in the modified text area. The demanded text manipula-
tion is carried out only in the case of a consistency. The additional
message parameter for the validation is the ID of the character after
which a character shall be inserted or deleted.

Editor A (compare Figure 2) inserts a new character X and also
submits the ID of the previous character in addition to the ID of the next
character. In this example, the previous character is B with ID 12 and
next character is C with ID 15. Editor B simultaneously inserts character
Y at the exact same position and submits the same message parameters.
First, an entering operation in the database system is validated. This
means the ID of the next character and the ID of the previous character
must lie beside each other. This must be the case before inserting the new
character, provided that the client document model is consistent to the
database model.

Problem situation 3 also can be solved the same way. Editor A
inserts a character and editor B tries to delete character C at the same
time. Before deleting, the database system checks if the previous ID still
corresponds to the character before C to the ID 12. This validation
reveals a temporary inconsistency, and the delete process is stopped.

From this point of view, the validation approach is comparable
with the lock approach. Both approaches attempt to avoid problem
situations in advance. The validation approach has, however, a better
performance and is easier to implement than the lock approach.

Approach with Sequences
This approach does not try to prevent the problem situations but

solves them by guaranteeing the total causal order of all operations with
sequence numbers. The order of the operations is carried out more or less
identically like in NetEdit [Zafer 2001] project.

The editor holds phase diagrams, with which the system can order
the operations correctly. With this approach, problem 1 can be solved,
but problem 3 still remains. To be able to solve problem 3, every editor
must manage a buffer in addition, in which those operations just
performed are noted. If, for example a character is deleted, then the
character, the ID, and further necessary information as well are stored
in the buffer. By receiving an update message based on an insert
operation, the reference character within the client document model is
searched. If the reference character is not found, problem 3 can be solved
with the help of the buffer.

The approach with sequences is solved mainly in the editor as
opposed to the other approaches.

Conclusion of the Approaches for Full Concurrency Support
Based on these reflections, the best performance for the synchro-

nous approach with direct update and the asynchronous approach is the
exclusive lock approach combined with the validation approach. This
combination guarantees full consistency for our ring of double linked
fields. In Figure 3, the insert transaction is illustrated. This transaction
is not only used for inserting characters in a collaborative environment,
but also for setting security, layout, structure, and flows.

CONCLUSION
In conclusion, we have chosen a hybrid approach, where the central

database management system plays a central role. Editing text means
invoking database transactions which generate consistency across all
editors. The consistency model depends on the update system and uses
exclusive locks and validation to guarantee full consistency within a ring
of double linked fields, representing documents.

The described transaction is as a scouting expedition for other
database-based word processing systems. In this capacity, we have
learned a number of valuable lessons, including the value of character-
position/objectId duality, the relationship between editor and database
as a mechanism to support consistency, and a number of interface design
concerns that arise specifically from the use of characters as lowest
granularity for text transactions.

REFERENCES
Ellis, C.A. et al.: Concurrency control in groupware systems. In:

Proceedings of ACM, SIGMOD, 1989, Vol. 18, 399-407.

Hodel, T.B., Technical Report University of Zurich 12003101,
2003. (http://www.tendax.net)

Ignat, C.L. et al.: Customizable Collaborative Editor Relying on
treeOPT Algorithm. In: Proceedings of ACM, ECSCW, 2003.

Ressel, M. et al.: An integrating, transformation oriented approach
to concurrency control and undo in group editors. In: Proceedings of
ACM, CSCW, 1996, 288–297.

Suleimann, M. et al.: Concurrent operations in a distributed and
mobile collaborative environment. In: Proceedings of IEEE, ICDE,
1998, 36–45.

Sun, C. et al.: Achieving convergence, causality-preservation and
intention-preservation in real-time cooperative editing systems. In:
Proceedings of ACM, TOUCHI (1), 63-108.

Sun, C. et al.: Consistency maintenance in real-time collaborative
graphics editing systems. In: Proceedings of ACM, TOCHI 9(1), 1-41.

Vidot, N. et al.: Copies convergence in a distributed real-time
collaborative environment. In: Proceedings of ACM, CSCW, 2000.

 Zaffer, A. et al.: NetEdit: A Collaborative Editor. TR-1-13,
Computer Science, Virginia Tech, 2001.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/collaborative-real-time-insert-

transaction/32297

Related Content

Design and Implementation of Smart Classroom Based on Internet of Things and Cloud

Computing
Kai Zhang (2021). International Journal of Information Technologies and Systems Approach (pp. 38-51).

www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-

computing/278709

Computational Color Constancy
Simone Biancoand Raimondo Schettini (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 5879-5886).

www.irma-international.org/chapter/computational-color-constancy/113045

A Work System Front End for Object-Oriented Analysis and Design
Steven Alterand Narasimha Bolloju (2016). International Journal of Information Technologies and Systems

Approach (pp. 1-18).

www.irma-international.org/article/a-work-system-front-end-for-object-oriented-analysis-and-design/144304

Increasing the Trustworthiness of Online Gaming Applications
Wenbing Zhao (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 3062-

3069).

www.irma-international.org/chapter/increasing-the-trustworthiness-of-online-gaming-applications/112731

Strategic Planning for Information Technology: A Collaborative Model of Information Technology

Strategic Plan for the Government Sector
Wagner N. Silva, Marco Antonio Vazand Jano Moreira Casa de Oswaldo Cruz (2019). Handbook of

Research on the Evolution of IT and the Rise of E-Society (pp. 370-385).

www.irma-international.org/chapter/strategic-planning-for-information-technology/211623

http://www.igi-global.com/proceeding-paper/collaborative-real-time-insert-transaction/32297
http://www.igi-global.com/proceeding-paper/collaborative-real-time-insert-transaction/32297
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/chapter/computational-color-constancy/113045
http://www.irma-international.org/article/a-work-system-front-end-for-object-oriented-analysis-and-design/144304
http://www.irma-international.org/chapter/increasing-the-trustworthiness-of-online-gaming-applications/112731
http://www.irma-international.org/chapter/strategic-planning-for-information-technology/211623

