
Innovations Through Information Technology 143

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

An Architectural Framework for a Web
Based Knowledge System

Sai Kakkaraju
University of Western Sydney, Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia,

slakkara@cit.ews.edu.au

Vijay Khandelwal
University of Western Sydney, Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia

v.khandelwal@cit.ews.edu.au

ABSTRACT
In this paper an architectural framework for a web based knowledge
system is presented. It is based on an existing web-based system-
CBEADS (Component Based E Application Deployment Shell), used for
developing and deploying eApplications using traditional database
systems. The proposed knowledge based architecture uses logic
programming and Datalog database techniques to overcome the
drawbacks of traditional database systems. K-CBEADS (Knowledge
based CBEADS) dist inguishes between data, knowledge, and
information. It can generate/capture knowledge and provide higher
throughput in information supply which has many uses in knowledge
management. Proposed architecture can be used for any web-based
knowledge system.

INTRODUCTION
Armour in his article “The case for a new business model: Is software

a product or a medium?” [1] Argued that software can be viewed as a
medium of choice, which along with brain and books can be used to store
knowledge. However unlike the knowledge stored in books knowledge
stored in software systems can be executed with resulting advantages.

If we take this view of the software then we need to have a software
framework, which can be set up in an organization that is capable of
capturing and sorting information (knowledge and data) and providing
appropriate information, and access to relevant people dynamically.

Most traditional software development approaches such as the
Waterfall method [19], Spiral Model [2,3], Rapid Prototyping etc. rely
on being able to completely specify the system during initial require-
ments analysis. These approaches are well suited for static applications
where requirements don’t change frequently. Generally the outcome
following these approaches is a final product. In dynamic environments
like eTransformation, specifying entire requirements initially is not
possible as these changes quite frequently with time.

Our focus in this study is on developing a web-based framework,
which can be set up in an organization that is capable of capturing and
sorting information (knowledge and data) and providing appropriate
information/access to the relevant people dynamically.

Such a framework should have following characteristics:

• Ability to distinguish between knowledge, data and information.
• Ability to add new functions and change existing functions while

the system is operational.
• Ability to perform inductive tasks to generate and capture

knowledge.
• Ability to perform quick searches.

There is much research being carried out currently by logic
programming community as well as software engineering community for
such a framework. In this paper we propose a new architectural
framework suitable for the above purpose by applying logic program-

ming techniques to a web-based system called CBEADS (Component
Based E Application Deployment Shell). We call this new architecture
K-CBEADS (Knowledge based CBEADS).

This paper is organized as follows. In section 2 we present the
existing CBEADS architecture. In section 3 we present the motivation
for a new architecture. In section 4 we define data, information and
knowledge and provide some technical details needed throughout this
paper. In section 5 we present K-CBEADS architecture. Finally in
section 6 we conclude this paper.

CBEADS: COMPONENT BASED E APPLICATION
DEPLOYMENT SHELL

Component Based E Application Deployment Shell (CBEADS) [9]
is a web- based system that runs in conjunction with a web server, and
provides a web-based interface to interact with it. As this is a web based
application it can easily be deployed as an intranet application within
an organization, or as an extranet application linking different organi-
zations.

The shell itself is made up of a number of components. These
components can be grouped into two major subsystems. The first is
CORE CBEADS that provides the overall framework to which different
eApplications can be plugged. It consists of security module, system
components, system database and workflow components. The second
subsystem consists of various applications plugged into the shell. These
consist of application components and application databases. The
overall CBEADS architecture is shown in figure 1.

As can be seen in figure 1 all the interactions originating from the
users first pass through a security module that carries out authentication.
It also checks what applications, and functions within these applications
the users are permitted to access.

After authentication every user is given a personalized home page.
This page displays the applications, and the functions within these
applications that the user is permitted to access. As an added security
measure before serving each request the security module validates the
user authority to access functions involved in serving the request.

Within the system components there are functions to create user
groups, and to allocate different applications and functions within these
applications to user groups. This, of course, is very similar to the
environment in many other application deployment systems.

There is a special function among CBEADS system components
that can be used to create new functions. This ability to create new
functions enables CBEADS to grow. These new functions can be grouped
to form applications.

One can develop and deploy new applications independent of other
applications within CBEADS. To develop a new application it is
necessary to decide what essential functions are required within that
application. For example if the application being developed is a Human
Resource Module we need a set of functions to add, edit and delete the

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

144 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

names of employees and other related information. We also need a set
of functions to display different reports based on this information such
as contact details, salary details, leave taken, etc. All these functions can
be grouped to form Human Resources Management application.

The architecture for application databases in CBEADS is very
similar to the architecture, which Shaw [20] has classified as “Repository
Architecture Pattern”. According to Shaw this architecture is suitable
for applications in which the central issue is establishing, augmenting and
maintaining a complex body of information. In such cases typically the
requirement would be for the information to be manipulated in a wide
variety of ways.

The other major element in CBEADS is the workflow component.
One of the purposes of this component in the case of workflow-based
eApplications is to inform users at login time that they have pending
tasks to process.

The following summarises the main features of CBEADS:

• It is a Web based system
• New functions can be added and existing functions modified while

the system is operational. There is no need to recompile and
install the software every time a change is made to an existing
function or when a new function is added.

• One can add and change fields in databases, or data structures in
data repositories while the system is operational.

• There is a user management and authentication system to allow/
restrict the user accessibility.

At present CBEADS is being piloted in various organizations
including at the University of Western Sydney. The applications include
stock control system, B2B order processing system, and a teaching
allocation system.

MOTIVATION FOR A KNOWLEDGE BASED SYSTEM
It is evident from the above that CBEADS possesses some very

desirable features for developing and deploying web based systems. It is
built with components, which can be developed and plugged into the
system without disturbing the existing system. There is no need for
recompilation or shutting down for updating the system. But as it uses
a database engine for inferencing it has the same drawbacks as most other
database systems. That is,

• It cannot distinguish between data and knowledge.
• It cannot capture knowledge from the users.
• The system can have redundant information in various tables.

Using CBEADS a user can query the system, get a response, create
tables, or define relations. But one cannot perform inductive tasks

directly. Also it is not possible for a user to get an explanation for an
observation. Similarly generating new knowledge from existing knowl-
edge is not possible. Finally there is no way for the system to find new
relationships within the defined relations or from within the informa-
tion provided.

We are therefore proposing a framework where software is consid-
ered as a medium for storing knowledge, and in which there are five
different ways in for a user to interact with the system [7]. These are
through

Observation
Inductive Task
Evidence
Information
Query

To achieve this we are proposing the use of existing logic program-
ming techniques where the terms data, knowledge and information are
already defined in terms of logic and Datalog databases (as discussed in
the next section), and which can distinguish between data, knowledge and
information. The outcome is the proposed K-CBEADS system architec-
ture that preserves the principal characteristics of CBEADS, is capable
of distinguishing between data, knowledge, and information, and is
capable of creating new knowledge.

DEFINITIONS AND CONCEPTS
In this section we present some definitions and concepts used in this

paper. These definitions are mostly standard from logic programming
perspective. Some definitions however are slightly modified to suit the
context. For a detailed discussion on Datalog databases one can refer to
[5]. For definitions of the terms that are not explicitly defined here one
can refer to [4,5,16,18].

Data
Data is purely extensional. By extensional we mean that the

representation does not denote more than one fact. A data item is the
representation of one particular fact. In the scope of this paper data
items are expressed as Datalog facts. For example, in a tutorial alloca-
tion system we represent that a tutor (Sai), wishes to tutor a particular
subject (KBS), in a particular campus (Kingswood) and at a particular
university (UWS). We assume that the data items are expressed as tuple
of values representing something about the state of the modelled domain
in relation with an entity or an occurrence. Thus in Datalog system
[4,5,15] the following is a data item.

Tutor (Sai, KBS, Kingswood, UWS). ………………………….(1)

Data items are well-formed formulas (wff) in Datalog system with
well-defined proof and model theories. The concept of Datalog is
explained later in this section. To represent a domain of interest, where
every fact in the domain is represented as a data tuple (wff), all that needs
to be done is to list the data items in the form of wffs that denotes all
the facts that denote the domain. Once this listing has been done
insertion, deletion, modification, filtering and combining of such a list
is straightforward.

Knowledge
Knowledge is primarily intensional. Intensional means that the

representation denotes more than one fact, and hence, it says something
about many similar facts in the domain of interest. In the case of
knowledge a simple enumeration of wffs is not enough to bring forth all
the information. As information is implicit one needs to apply an
inference procedure to compute its logical completion, which, by
definition, contains all the facts inferable from those wffs. In Datalog
context, this completion is a finite set of data representations called
ground sentences that could ultimately be enumerated.

A knowledge item is the representation of many similar facts, in
the sense that from a single knowledge item many similar facts can be
made explicit by the application of inference rules.

Fig 1: CBEADS architecture

User
Security
Module

System
Components

Workflow
Components

System
Database

Application components
Application
Database

CORE CBEADS

Innovations Through Information Technology 145

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

For instance, it is well known that whoever wishes to tutor
knowledge based systems (KBS) also wishes to tutor artificial intelli-
gence (AI) unless explicitly stated. The following Datalog rule repre-
sents this knowledge.

Tutor (p, AI, c, u) ¬ Tutor (p, KBS, c, u)………………………….(2)

Intuitively this rule means that if a person (p) studying at university
(u) wishes to tutor KBS in a campus (c) he or she also wishes to tutor AI
at the same campus.

From (1) and (2) one can infer the fact Tutor (Sai, AI, Kingswood,
UWS).

Similar facts can be inferred for every other tutor of whom it has
been explicitly asserted that they wish to tutor KBS.

Information
In general an information item [7] is, an answer to the query or an

explanation to the observation passed to the user, new axioms or updates
to the knowledge base, or new observations (facts) to be added, removed
or updated in the database. An information item is again a wff. It is either
a data item or a knowledge item derived from the current data and
knowledge stocks by an inference procedure. Given a set Knowledge È
Data items, the amount of available information is that superset thereof
characterizable from Knowledge È Data by application of an inference
procedure. Information is therefore considered as knowledge and data
by inferential processes. For example, the answers to a request such as
‘List all represented facts of a specified kind’ constitute information in
the form of data. Given the request ?- Tutor (p,-,Kingswood,-) , a
Datalog evaluation engine would list all the names of tutors who would
like to be the tutors in Kingswood campus, among which is Sai. If the rule
expressing the relationship between KBS and AI suggested above were
available, then given the request?- tutor(p,-,Kingswood,-), a Datalog
evaluation engine would also provide the information that Sai is a
candidate to tutor for AI even though it was only ever explicitly asserted
that Sai wants to be the tutor for KBS.

Datalog
A Datalog language is any first order language without function

symbols. Any term in a Datalog language is either a variable or a
constant. Datalog programs have restrictions on clauses that can be
formulated using the notions of a safe variable clause and range restricted
clauses.

Let C=(A¬L
1
,..., L

n
) be a normal clause. Then if L

i
 is a positive

extensional or intensional literal the each variable occurring in L
i
 is safe

or if L
i
 occurred in an equation where S is isomorphic to T and either if

all variables of S is safe or all variables in T are safe then each variable
occurring in L

i
 is safe.

C is range restricted if each variable in C is safe. A database is range
restricted if every clause in it is range restricted. A goal is range
restricted, if so is the clause A ¬L, where A is any ground atom.

A Datalog database is any range restricted database in a Datalog
language. A Datalog program P is any Datalog database such that for
every clause C ÎP, the predicate symbol in the head of C is intensional.

K-CBEADS ARCHITECTURE
Based on the above, a knowledge based architecture for CBEADS

has been developed shown in figure 2. In this architecture we use a
knowledge base, a database and three different inference engines.
Knowledge base is made of knowledge components from core CBEADS
as well as the knowledge part of the working components. Similarly
database is made of data components from core CBEADS as well as the
data part of the working components. In the broad context of this
discussion, following two procedures for computing information from
data and knowledge representations are usually considered. In the
absence of knowledge representation, abductive engine or inductive
engine, this system uses traditional query answering algorithms with
traditional databases and works similar to the existing CBEADS system.

K-CBEADS uses epistemic logic programs to represent data and
knowledge. In the presence of knowledge representations, K-CBEADS

use Datalog evaluation algorithms as in deductive database engines. K-
CBEADS system can distinguish between data, knowledge and informa-
tion. When a user inputs a task (Observation, Inductive Task, Evidence,
Information or Query, as discussed in section 3) the abductive engine
receives it and places it in the working memory along with relevant
axioms from knowledge base or examples from database. Based on the
input type either deductive engine or inductive engine or both work with
the information in working memory to perform the given task.

The major tasks taken care of by the abductive engine are:

• Receiving the input from the user and abducting the necessary
information from the knowledge base, or database, and placing
them in the working memory.

• Resolving any conflicts.
• Updating knowledge base and database, and passing the informa

tion to the user.

Abductive engine proposed in [11,12] amply serves the purpose.
Once the abductive engine places the input and the information

relating to the input in the working memory, deductive engine works
with the working memory to generate new information.

The major task of the deductive engine is to generate new infor-
mation (such as answering a query) from the information available from
the working memory. Many such Datalog evaluators are proposed
[4,5,15,16].

To generate knowledge we use inductive engine with the informa-
tion in the working memory. Any one of the Inductive Logic Program
engines proposed in the literature [13,17,18] extended to suit epistemic
logic programs serve the purpose.

CONCLUSION
In this paper we have presented an architecture for a web based

knowledge system. It is based upon the idea that “Software is a medium
for storing knowledge”. It uses three types of inference mechanisms-
induction, deduction and abduction. It inherits the merits of the existing
web based system architecture and overcomes its shortcomings by
having a Datalog database instead of a normal database. This new
architecture is capable of creating new knowledge, providing a faster
search engine and a good decision support system as it keeps the user well
informed by explanations for every observation. Though most of the
systems explained here (Abductive logic programming, Inductive logic
programming, Deductive databases, Datalog databases, and Component
based systems) have been dealt with independently, to our knowledge this

U
S
E
R

Abductive Engine

Inductive
Engine

Deductive
Engine

Working
Memory

Information

1. Observation
2. Inductive Task
3. Evidence
4. Information
5. Query

Knowledge Data

Hypothesis
Knowledge

Axioms Observation
Examples
Facts

Core
cbeads
Rules

C 1

C n

Core
cbeads
Data

C 1

C n

Figure 2: Knowledge Based CBEADS Architecture

146 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

is the first work to combine all these techniques to propose a unified
framework.

There are a number of challenges involved in constructing such a
framework. The main difficulties are choosing suitable knowledge
representation, and updating the existing inference engines to work with
the chosen knowledge representation.

We considered epistemic logic programs [8] as the knowledge
representation tool and updating the abductive engine [11,12] to suit
epistemic logic programming. Future work includes choosing and updat-
ing deductive and inductive engines to suit epistemic logic programming.

REFERENCES
 [1] Armour, P.G. (2000), “The case for a New Business Model: Is

software a product or a Medium”. ACM Communications. Vol 43.
 [2] Boehm, B. (1988), “A Spiral Model for Software development

and enhancement”. IEEE Computer May 1988.
 [3] Boehm, B. and A.Egyed (1998), “Using win win Spiral model:

Case study” in IEEE computer vol July 1998, pp. 33-44.
 [4] Ceri, S., G.Gottlob and L.Tanca (1990), “Logic Programming

and databases”. Springer-Verlag. ISBN 3-540-51728-6.
 [5] Das.S.K (1992), “Deductive Databases and Logic program-

ming”. Addison-Wesley. ISBN 0-201-56897-7.
 [6] Epner.M (2000), “Poor Project Management Number-One

Problem of Outsourced E-Projects”. Research briefs, cutter Consor-
tium, Vol 7, November 2000.

 [7] Fernandes, A.A.A (2000), “Combining Inductive and Deduc-
tive Inference for Knowledge Management Tasks”. In 11th Intl.Workshop
on Database and Expert systems Applications. IEEE Computer Society.

[8] Gelfond.M (1994) , “Logic programming and reasoning with
incomplete information”, In annals of mathematics and Artificial
Intelligence 12, PP:89-116.

[9] Ginige.A (2002), “New paradigm for Developing Evolutanory
software to support E-Business” in Hand book of software engineering
and Knowledge Engineering, Vol.2, S.K.Chang Ed, World Scientific, PP
711-725.

 [10] Ginige.A (2002), “Web Engineering: Managing the complex-
ity of web systems development”, Presented at SEKE02, Ischia, Italy.

 [11] Lakkaraju, S.K. (2001), “A SLDNF based Formalization for
Updates and Abduction”, M.Sc (honours) Thesis, University of Western
Sydney.

 [12] Lakkaraju, S.K. and Yan Zhang (2000), “Rule Based Abduc-
tion”, In Proceedings of 12th ISMIS, pp525-533.

 [13] Lavra
 N. and S.D•eroski (1994). “Inductive Logic Programming: Tech-

niques and applications”, Ellis Horwood.
 [14] Loke S.W and Davison, A. “Logic web: Enhancing the Web

with Logic programming”, Journal of logic programming.
 [15] Loyer Y.N. and D.Stamate (1999). “Computing and compar-

ing semantics of programs in four valued logics”. In MFCS99. PP 59-
69 .

 [16] Minker, J. (1996). “Logic and databases: A 20 year retrospec-
tive”. LID’96. PP 3-57.

 [17] Muggleton S. and L.De Readt (1994). “Inductive Logic
Programming: Theory and Methods”. Journal of Logic programming 19/
20 PP: 629-679.

 [18] Nienhuys-cheng S.H and R. DeWolf. “Foundations of Induc-
tive Logic Programming”, LNAI 1228. Springer-verlag,1997. ISBN 3-
540-62927-0.

 [19] Royce, W.W. (1970) “Managing the development of large
software systems: Concepts and Techniques”, WESCON.

 [20] Shaw M. and D.Garlan (1996), “Software architecture -
Perspectiove on an emerging Discipline”, Prentice Hall.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/architectural-framework-web-based-

knowledge/32320

Related Content

Generalize Key Requirements for Designing IT-Based System for Green with Considering

Stakeholder Needs
Yu-Tso Chen (2013). International Journal of Information Technologies and Systems Approach (pp. 78-97).

www.irma-international.org/article/generalize-key-requirements-designing-based/75788

Online Learning Propelled by Constructivism
Kathaleen Reid-Martinezand Linda D. Grooms (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 2588-2598).

www.irma-international.org/chapter/online-learning-propelled-by-constructivism/183970

Method of Fault Self-Healing in Distribution Network and Deep Learning Under Cloud Edge

Architecture
Zhenxing Lin, Liangjun Huang, Boyang Yu, Chenhao Qi, Linbo Pan, Yu Wang, Chengyu Geand Rongrong

Shan (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-

edge-architecture/321753

Cryptanalysis and Improvement of a Digital Watermarking Scheme Using Chaotic Map
Musheer Ahmadand Hamed D. AlSharari (2018). International Journal of Rough Sets and Data Analysis

(pp. 61-73).

www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-

map/214969

An Efficient Clustering in MANETs with Minimum Communication and Reclustering Overhead
Mohd Yaseen Mirand Satyabrata Das (2017). International Journal of Rough Sets and Data Analysis (pp.

101-114).

www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-

overhead/186861

http://www.igi-global.com/proceeding-paper/architectural-framework-web-based-knowledge/32320
http://www.igi-global.com/proceeding-paper/architectural-framework-web-based-knowledge/32320
http://www.irma-international.org/article/generalize-key-requirements-designing-based/75788
http://www.irma-international.org/chapter/online-learning-propelled-by-constructivism/183970
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861

