I DEAGROUPPUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4940

Some Requirement

Specification |ssues

for Service-Oriented Architectures

Jaroslav Krdl
Charles University, Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Prague, CZ, jaroslav.dral @mff.cuni.cz

Michal eemliéka
Charles University, Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Prague, CZ, michal/zemlicka@mff.cuni.cz

ABSTRACT

Service orientation is now becoming a widely used powerful software
engineering paradigm. The requirement specifications of the systems
having any service-oriented architecture and therefore a peer-to-peer
structure depend crucially on the properties of the interfaces of the peers.
The interfaces should be user-oriented and coarse grained. Another
important feature of service oriented systems is the dynamics of the
network of services. Extreme cases are the systems of e-commerce and
of e-government. It is crucial for feasibility of some requirements and
techniques. User-oriented interfaces are good for the development of
systems having advantageous software engineering properties.

INTRODUCTION

Current software systems development methodology is changing
from the development of logical monoliths, possibly distributed, to the
systems having the character of networks of relatively autonomous
components (services) interconnected via a middleware as black boxes
(their interface only is known) and behaving like peers in a virtual peer-
to-peer network. Such systems are told to be service-oriented software
systems (SOSS). We say that SOSS have service-oriented architecture
(SOA). The concept of SOSS is not always properly understood.

This paper is based on the experience with the development and use
several SOSS systems (five flexible manufacturing systems, several
automated warehouses, etc.) and with the development and use of
customizable warehouse control software. All the projects were finished
successfully and were retired after 10-15 years. The reason was that the
systems were not needed any more, it was not due software problems.
At least two of the systems implemented in seventies were still in use
in 2002 without any maintenance for many years. Similar projects
known to the authors not using the SOA-like philosophy failed.

It is well known that the crucial point of software development and
successful use is the requirement specification (RS). The quality of RS
depends substantially on user involvement [SG94]. The functions of
SOSS must be specified via cooperation of the functions provided by the
services. The functions are specified via the interface(s) of the services.
If the users are obliged to specify the functions of the whole SOSS, the
user must be able to understand the interfaces and to use them properly.
The interfaces should therefore be user oriented. We shall show that the
user-orientation of the interfaces implies crucial software engineering
advantages of the resulting system (stability, reusability, modifiability,
etc.).

Our concept of SOSS is wider than the concept of SOA discussed in
literature (see e.g. the Microsoft point of view in [Wat03]) as SOSS need
not use Internet or the web services. The cases of SOSS mentioned above
indicate that SOA can be applied not only for large projects, not only
in e-commerce and not only with web service.

WHEN SOSS SHOULD BE DEVELOPED

The globalization of organizations led to requirement of integra-
tion of legacy systems and third party products. Large on-line systems
cannot be switched off for a longer time. If such a system is to be
integrated as a component of a new system, it must be integrated ‘amost
unchanged’. The only change is an addition of gates (ports) providing

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour.

interface functions allowing other components to communicate with
the given one. Examples are:

1. e-government (peers are cooperating information systems of
offices, e.g. information system of customs office),

2. large enterprises (cooperating 1S of autonomous divisions),

3. process control (cooperating drivers of /O devices),

4. military systems (cooperating 1S of military bodies, services,
weapon technologies, soldiers),

5. systems supporting e-commerce.

We call the systems similar to the e-commerce systems software
alliances. The communication via common database is preferable if data
analysis should be done. Such a solution is not easy in the case of alliances
and is not without problems otherwise. In e-commerce the communica-
tion between communicating parties starts with the search for an
appropriate partner. Such a partner must be accessible and must under-
stand the messages generated by the initiator of the communication. E-
commerce must therefore use standards like SOAP and Internet.

The points 3 and 4 show that ‘service’ does not always mean
‘information providing service' or ‘web service' — it can be any arbitrary
properly encapsulated activity (including activities of human beings) —
and the middleware need not be Internet. It is even possible that some
parts of the middleware are based on TCP/IP protocol, and others are
implemented via tools of the operating system or via a common
database. This turn can be applied in the cases 1-4. We call such systems
software confederations [K<03a].

In software confederations a proprietary solution could be prefer-
able. In confederations, e. g. due to the effectiveness reasons, some parts
of the middleware must use data oriented communication and other
means not based on Internet (e.g. interprocess communication sup-
ported by an operating system).

Service-oriented software systems (SOSS) have many software
engineering advantages [K+03a]. Software architectures in general and
SOA in particular significantly influence the feasibility of some require-
ments (i.e. decentralization, outsourcing, etc.) [K<03a].

Requirements specifications of SOSS should include — according to
the experience of the authors —explicit statement that SOSS is to be
developed. It should be specified what service types will be integrated
into SOSS (data service, activity, supporting middleware, services
powered by people, legacy system or third party product, etc.). As the
service interfaces should be user-oriented the specification of peers

Figure 1. The structure of an SOSS

ul — Browser User

S service (peer)
Ul user interface (peer)
G s G gateproviding interface

s [6 [ widdevae

Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.



266 2004 IRMA International Conference

should be formulated via message formats obeying a user-oriented
language that defines the interface of the components. Last but not |east,
the principles, tools, and services of the infrastructure (middleware)
should be specified or enhance (see the concept of FEG mentioned
below). It includes the properties of the service infrastructure provided
by the gates connecting services to the middleware.

The prevailing (but not exclusive) form of communication in SOSS
is command/operation. It is usually not necessary and even possible to
build central data store. There often are also technical reasons why to
avoid centralized means. The structure of SOSS is in Fig. 1.

USER-ORIENTED INTERFACES

Until now we have treated the service from the software developers
point of view: as a black box used as a node of a peer-to-peer network
(i.e. permanently active process) with some interface. It is known that
main reason for software project failures (compare e.g. [SG94]) is flaws
in requirements specification. In SOSS the component interfaces must
be understandable by the users, i.e. it should be user knowledge domain
oriented and declarative rather than procedural. It must be user-oriented.
The requirements on SOSS must then be defined via the service interfaces
with collaboration with users. So the interfaces must be understandable
to their users. It implies that the service operation should coincide with
well-defined business operations and the interface is based on commands
reflecting the structure and semantics of user knowledge domain. As the
users are used to use few semantically rich commands they are unable to
accept/react on too long sequences of simple programming-oriented
commands. The user-oriented communication tends therefore to be
coarse-grained. Coarse-grained interface is good for prototyping of
peers via an operator console.

The peers are often properly encapsulated already existing infor-
mation systems. The use of user-oriented interface has then further
advantages. As the actions and other activities of users do not usually
vary quickly (compare bookkeeping), there is good chance that the
corresponding service interface will be fixed for a quite long period of
time. Thisis a crucial software engineering advantage as stable interface
simplifies the integration and the modifications of the system and
increases its stability.

Business communication cannot be fully automated, as the busi-
nessmen only are responsible for business agreements. Some details of
the agreements like prices, terms, and other parameters must be often
agreed by human beings. It is yet another reason for user orientation of
the interfaces.

If the messages are user oriented the communication traffic
between communicating parties is low and can be therefore easily logged
and analyzed. The semantics of the messages is clear and usually there
are not too many messages.as the messages are semantically rich and we
need few messages to perform an activity. Such messages will not be
influenced by frequent changes of XML standard-based message formats.
It simplifies debugging, prototyping, maintenance, and modification
[Kraos].

The drawback is that user-oriented messages will have a format that
is too specific to be quickly standardized - e.g. in the form of SOAP-based
protocols. This problem is not too important in the case of software
confederations.

We have seen the in the case of alliances the use of standards is
unavoidable. The existing standards like SOAP are cumbersome and
rather procedural and are therefore better understandable to program-
mers if to anybody than to users. It is then difficult to test whether some
SOAP protocol implements user requirements properly..

The experience with systems having main features of SOA indicates
that there is yet another bonus of service-oriented architectures. SOSS
can be very reliable [KD79, KD89]. COBOL systems have the property
that applications can be developed autonomously like services in SOA
systems. The problem Y2K has shown that in many enterprises the
systems were used for years without any support.

SOAP WSDL, and UDDI are based on object-oriented philosophy,
on remote procedure calls. These standards are general in the sense that
like programming languages they can define a very wide class of
interfaces. On the other hand, the messages used in SOAP framework

tend to be fine-grained programming-oriented. They tend not to be user-
oriented.

The high-level declarative user-oriented communication specifi-
cation must be translated into SOAP messages in the cases when SOAP-
based communication must be used. This is a well-known problem of
compilation [¢K00]. SOSS developers must, however, in many cases
write manually programs transforming declarative-type commands into
sequences of SOAP-commands. This is source of errors and delays.
These disadvantages can be weakened by the application of compiler like
tools that simplify the translation the high level messages into SOAP
‘programs’. Unfortunately the tools like XSLT are unstable and very
inefficient. Another solution can be found in [+K0O].

A service in SOA can be a standard three-tier information system
with its own users and user interfaces equipped by an additional interface
— by agate. If the gate is implemented as recommended in e.g. ASP.NET,
then there is a danger that the communication will be too dependent on
the implementation philosophy and/or implementation details of the
component. It is undesirable as implementation varies too quickly.

It can be easily deduced that in software confederations the
following requirements can be easily fulfilled:

. Integration of legacy systems and third party products via adding
a proper gates, Fig. 1;

. The use of existing interfaces of integrated legacy systems;

. Simple dialogs between services (just a few steps);

. Support of different level of service automation (even of manual

ones) and of the is implemented as a component working as a peer
in a peer-to-peer network;

. Stability of the interfaces due to the fact that the complex
problems that people have to solve do not change as fast as their
solutions and related standards ;-

. Internal architecture and implementation details of the compo
nents can be hidden;
. Software engineering advantages as simpler development, easier

and cheaper maintenance, incremental development, openness,
modifiability etc.;

. Changes are local and peers can be developed/modified almost
independently (in an autonomous way).

The interfaces can be made even more flexible and less implemen-
tation dependent if we implement them as a two-tier structure [K+02]
consisting of Primary gate G being a part of the peer and one or more
front-end gates (FEG). FEG is a service serving as message format
transformers.

Problems for developers:

. Declarative interface can hide some potential functions of the
service provided by the implementation (e.g. useful methods).

. SOAP does probably not support the user orientation of inter
faces well.

. Standards are changing too fast, so their use need not be good in
the case on confederations. This can be solved using FEG.

. Interface choice strategy can be different for e-commerce and for

the interconnection of the services within a company [K<03b].

FURTHER SOSS DEVELOPMENT ISSUES

Requirements specifications for SOSS is in comparison with usual
software development lifecycle more structured and it often require the
involvement of company top-management in requirements specifica-
tion. Typical life cycle of a SOSS is incremental. It is, the development
is via development, reuse, or purchasing of new services (applications)
and their integration into the system. Confederative systems can make
easier business process reengineering, the restructuring of the whole
enterprise inclusive [K+03a]. Examples are outsourcing (a division is
outsourced with its autonomous information systems), decentralization
of the enterprise, incremental development with short service develop-
ment life cycles and via agile programming [BB+01]. Top-management
should therefore formulate its long-term requirements or, at least, its
expectation about the company future. The developers should under-

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.



stand what opportunities SOSS offers to enterprise strategy.

Middle management should be together with end-users involved
into the formulation of operation requirements. The specification of
service functions should be possible via description of user-oriented
interface. Development of such an interface cannot be task of a project
manager only (as recommended in [SG94]) as this activity requires a
significant part of the SOSS development effort. It therefore cannot be
the task for one person only. It must a common task of users and
developers. It especially needed in the case of legacy systems as their
functions are best known to their users. The cooperation between users
and developers similar to the one known from extreme programming and
from agile forms of development is needed and useful.

We have shown that the requirements specification of SOSS must
be more structured than the specifications of logically monolithic
possibly distributed systems. SOSS specifications should include the
specifications of communication rules, message formats, and infrastruc-
ture services. The tools, methods, and best practices for this task are not
well established yet.

It is, however, not the main problem. SOA is a new paradigm for
many developers. By a paradigm we understand the philosophy,
methods, tools, skills, and best practices proven to be good for the
solution of certain class of problems. The history of object-oriented
paradigm shows that years are necessary to apply a new paradigm widely
in practice.

SOA requires a specific intuition, skills, and problem solving
patterns. One cannot expect that the people used to develop systems
from scratch using e.g. object-oriented techniques will be ready to apply
turns not only different from the object-oriented ones but sometimes
against them. An example is the principle to build services as quite large
components starting from their interfaces that should be user oriented.
Object-oriented systems tend to use many simple collaborating meth-
ods. It results into long method call sequences of rather simple methods.
This problem is only partially reduced if we use components in the sense
of UML. The services in SOSS can be (should be) developed using OO
attitude.

The acceptance of SOSS is not an easy task for the data-oriented
people as well. The services in SOSS do not provide only data
manipulation functions like data storing, exchange, analysis, and pre-
sentation.

The services can support and often support real-life activities
sometimes involving human activities (process control in manufactur-
ing or in weapon control systems, activities of soldiers in terrain,
businessmen in business processes, etc). The communication protocols
in SOSS cannot be therefore fully automated. The communication
should include the supervision of human beings and human beings only
are often able to resume/restart a business process when some of its steps
failed. A proper distribution of activities between automated processes
and human activities increases substantially the system stability [Kra98].
An improper application of data-oriented techniques, like the tendency
to develop common databases and/or data concepts for substantially
different applications and to overuse database triggers and stored
procedures for the communication between some services can be risky.

CONCLUSIONS

Service orientation is becoming a very important paradigm. It is
confirmed by the by the success of tools supporting service orientation
(see XML and its dialects), and explosively growing interest of big
software providers and by the success of already implemented SOSS's.
There are many domains (e.g. global systems, e-government) where the
service orientation is the only feasible solution.

Service orientation can have significant advantages even for quite
small systems as the decomposition into services brings substantial
resource savings and increase the system quality. Reasons for these
savings are in broader opportunity to integrate legacy systems and third
party products and the effects of decomposition itself [K<02]. Ele-
ments of service-orientation were long time ago present in batch
systems written in COBOL and especially in many soft real-time systems
(see e.g. [KD79]). SOA has grown into an important software develop-
ment paradigm only in the last decade an especially in the last years. The

Innovations Through Information Technology 267

promises and limits of service orientation have not been investigated
enough yet. SOA is often difficult to accept for the people trained in
object-oriented work.

If good service interfaces are used SOSS's can have significant
software engineering advantages (incremental development, modifi-
ability, better requirements specification process, agile programming).
Practical experience of the authors from realizations of systems starting
from mid 70-ies [KD79, K<00] indicates that SOSS can have the
advantages mentioned above. The use of service orientation requires
some effort to start with. Some existing stereotypes and prejudices must
be overcome.

Any newly applied paradigm requires developing of specific best
practices, tools, and development patterns. It is to be still developed.
Each paradigm has its own domain of its optimal application. Typical
area of application of SOSS is in large systems development like e-
government, customer relationship management and e-commerce.
Surely there exist some problem domains where SOSS cannot be reason-
ably used. It can be expected in the case of very small (but not medium
size) systems, for some applications of scientific or technical compu-
tations, and probably some data intensive systems. SOA has many
features common with grid computing. This fact was not studied enough
yet. The limits of the applicability of SOA are still to be investigated

The use of SOA is not always positively influenced by marketing
strategies of large software vendors. Open problem is the marketing
strategy (what to buy, reuse, and build). In our opinion, the orientation
toward user-oriented coarse-grained interfaces of application services/
components is a crucial condition of the success of any SOSS..

REFERENCES

[BB+01] Beck, K., Beedle, M., van Bennekum, A., Cockburn,
A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A.,
Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K.,
Sutherland, J., Thomas, D.: Agile programming manifesto (2001) http:/
/www.agilemanifesto.org/.

[BMS98] Bernus, P., Martins, K., Schmidt, G.: Handbook on
Architectures of Information Systems. Springer, Berlin (1998)

[Bra02] Bray, 1.K.: An Introduction to Requirements Engi-
neering. Addison-Wesley, Harlow, United Kingdom (2002).

[FHLWO3] Fensel, D., Hendler, J., Lieberman, H., Wahlster,
W.: Spinning the Semantic Web: Bringing the World Wide Web to its Full
Potential. MIT Press, Cambridge, MA (2003).

[Got02] Gottesdiener, E.: Requirements by Collaboration.
Addison-Wesley/Pearson Education, Boston, MA (2002).

[Kraos] Krdl, J.: Informa

ni systémy, (Information Systems, in Czech). Science, Veletiny,
Czech Republic (1998)

[Kra99] Krdl, J.: Architecture of open information systems.
In eupan

i

, J., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., eds.: Evolu-
tion and Challenges in Systems Developments, Kluwer Academic/
Plenum Publishers (1999) 131-138, presented on 7th int. Conf. on
Information Systems, Bled, Slovenia, Sept. 21-23., 1998.

[KD79] Kral, J., Demner, J.: Towards reliable real time
software. In: Proceedings of IFIP Conference Construction of Quality
Software, North Holland (1979), pp. 1-12.

[KDK89] Krdl, J., Demner, J., Koste

ka, V.: Synchronization primitives for mass service like control
software. Polytechnica 7 (1V,1) (1979), pp. 11-21, also in Proceedings
of IFIP-IFAC 3rd SOCOCO Conference, Praha, 1989.

[Ke00] Kral, J., eemli

ka, M.: Autonomous components. In Hlava

, V., Jeffery, K.G., Wiedermann, J., eds.. SOFSEM’2000: Theory
and Practice of Informatics. Number 1963 in LNCS, Milovy, Springer
V. (2000), pp. 375-383.

[Ke02] Kral, J., eemli

ka, M.: Necessity, Challenges, and Promises of Peer-to-Peer
Architecture of Information Systems. In G. Harindranath, et all, eds.:
New Perspectives on Information Systems Development: Theory, Meth-

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.



268 2004 IRMA International Conference

ods and Practice. Kluwer Academic/Plenum Publishers, New Y ork,
2002.

[Ke03a] Kral, J., semli

ka, M.: Software confederations - an architecture for global systems
and global management. In Kamel, S., ed.: Managing Globally with
Information Technology, Hershey, PA, USA, Idea Group Publishing
(2003). pp. 57-81.

[K+03b] Kral, J., semli

ka, M.: Software confederations and alliances. In: CAiSE’'03
Forum: Information Systems for a Connected Society, Maribor, Slovenia,
University of Maribor Press (2003).

[Lan01] Lanzerini, M.: Data integration is harder than you
though (2001), CooplS 2001, www.science.unitn.it/coopis, choice vid-
eos/slides.

[Pet77] Peterson, J.L.: Petri nets. ACM Comput-
ing Surveys 9 (1977), pp. 223-251.

[SG94] Standish Group: The chaos report. (1994), http://

www.pm2go.com/smapleresearch/chaos1994\_1.php.

[Udd] UDDI Initiative: Universal definition, discovery,
and integration, version 3. An industrial initiative, http://uddi.org/pubs/
uddi\_v3.htm.

[W3b] W3 Consortium: Web service definition language.
A proposal of W3 Consortium. http://www.w3.org/TR/wsdl.

[W3c] W3 Consortium: Simple object access protocol. A
proposal of W3 Consortium. http://www.w3.0rg/TR/SOAP.

[Wat03] Watling, N.: Web services in enterprise
computing (2003) Talk at SI'2003 in Prague.

[+KO0O0] eemli

ka, M., Kral, J.: Semitop-down parsing in information systems. In:
Proceedings of SCI/ISAS 2000 Conference, Orlando, Florida (2000).

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.



0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/some-requirement-specification-

issues-service/32350

Related Content

Advances in Audio Restoration

Don Maueand Joseph C. Kush (2015). Encyclopedia of Information Science and Technology, Third Edition
(pp. 6064-6079).

www.irma-international.org/chapter/advances-audio-restoration/113063

Building Organizations Image: How to Control a Public Relations Crisis and Communication
Badreya Al-Jenaibi (2019). Handbook of Research on the Evolution of IT and the Rise of E-Society (pp. 89-
107).

www.irma-international.org/chapter/building-organizations-image/211612

Toward an Interdisciplinary Engineering and Management of Complex IT-Intensive
Organizational Systems: A Systems View

Manuel Mora, Ovsei Gelman, Moti Frank, David B. Paradice, Francisco Cervantesand Guisseppi A.
Forgionne (2008). International Journal of Information Technologies and Systems Approach (pp. 1-24).

www.irma-international.org/article/toward-interdisciplinary-engineering-management-complex/2530

A Study on Bayesian Decision Theoretic Rough Set
Sharmistha Bhattacharya Halder (2014). International Journal of Rough Sets and Data Analysis (pp. 1-14).
www.irma-international.org/article/a-study-on-bayesian-decision-theoretic-rough-set/111309

The Importance of Systems Methodologies for Industrial and Scientific National Wealthy and
Development

Miroljub Kljajic (2010). International Journal of Information Technologies and Systems Approach (pp. 32-
45).

www.irma-international.org/article/importance-systems-methodologies-industrial-scientific/45159



http://www.igi-global.com/proceeding-paper/some-requirement-specification-issues-service/32350
http://www.igi-global.com/proceeding-paper/some-requirement-specification-issues-service/32350
http://www.irma-international.org/chapter/advances-audio-restoration/113063
http://www.irma-international.org/chapter/building-organizations-image/211612
http://www.irma-international.org/article/toward-interdisciplinary-engineering-management-complex/2530
http://www.irma-international.org/article/a-study-on-bayesian-decision-theoretic-rough-set/111309
http://www.irma-international.org/article/importance-systems-methodologies-industrial-scientific/45159

