
366 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Distributed Data Mining and its
Applications to Intelligent Textual

Information Processing
Shibin Qiu

Department of Electrical and Computer Eng., University of New Mexico, sqiu@unm.edu

Mei Qiu
Emcore Corporation, Albuquerque, NM, mei_qiu@emcore.com

ABSTRACT
Textual information processing is of fundamental importance, due to
the massive amount of documents, especially online textual information
that we need to process every day. In this paper, we study data mining
techniques applied to intelligent textual information processing in
distributed environments, including text classification, information
extraction (IE) and topic detection and tracking (TDT). These intelligent
processing techniques will improve the quality and efficiency of
information resource management and utilization. Their statistical
models and computational algorithms challenge the researches in data
mining and distributed/parallel computing. When successfully applied,
they will help enhance and benefit applications in IT, digital library, and
information retrieval. Specifically, we study the distributed computing
of the following algorithms: naïve Bayes classifier combined with
expectation-maximization (EM) for text classification, hidden Markov
model for information extraction, and deterministic annealing with EM
for topic detection and tracking. We also study the performances of the
proposed algorithms and experiment on the improvements.

 INTRODUCTION
Text classification is designed to classify documents into pre-

defined classes. One example of its applications is the automatic
classification of Internet news articles. Information extraction (IE) is
the process of filling the fields in a database by automatically extracting
sub-sequences of the documents. IE can be used, for example, to extract
names of acquired companies and their prices in a newswire article
regarding company takeovers. It can also be used to extract job titles
from job posting documents. Topic detection and tracking (TDT, also
called novelty detection) is a dynamic classification problem where
topics are identified and clustered based on contents of documents and
events are clustered on time to build temporal class hierarchy. For
instance, when news reports on new events appear, they are different
from existing classes and a new class in the hierarchy is added. These
textual processing functions are called intelligent processing because
they are different from traditional processing capacities such as text
matching and searching. When these intelligent processing functionalities
are integrated into an information system, they enable better utilization
of text documents, provide more effective retrieval of digital docu-
ments, and promote new and creative uses of the resources to support
knowledge-based inference and problem solving. They can also leverage
much more services to end users with rich features and more efficient
management of information resources for an enterprise.

Since documents in organizations are distributed over the Internet
and over large geographical locations, distributed computing must be
considered in order to apply these intelligent methods in practice. These
textual processing algorithms involve theories from artificial intelli-
gence, machine learning and data mining, and demand large amount of
computational efforts. When distributed, they are even more challeng-
ing. We review related works in the following before we present our
studies in detail.

Statistical algorithms based on Bayesian theorem are the most
popular solution for text classification, though some other approaches
such as support vector machine are also used [12, 14]. Naïve Bayesian
classifiers are trained with labeled documents. When the available
number of labeled documents is limited, naïve Bayesian algorithm is
combined with the EM learning algorithm to estimate statistical param-
eters using unlabeled documents [14]. Due to the huge amount of
documents and their rapid proliferation, naïve Bayesian combined with
EM learning (NB-EM) have been extensively used in researches and
production systems. Large amount of textual information also requires
substantial processing power. When single processing node is not
enough, parallel solution is the natural choice. When documents are not
available in a centered site, distributed computing must be considered.

Classification based on data clustering has been parallelized and
achieved substantial speedups [5][15]. A parallel classification algo-
rithm based on decision tree was studied in [7] for mining large data sets.
Parallelism for mining association rules has been studied [1]. Belief
networks for probabilistic inference have been implemented in parallel
[8]. A parallel implementation for the NB-EM algorithm was proposed
and had achieved satisfactory speedups for small clusters [9]. Active
learning using query-by-committee has been applied for text classifica-
tion [11].

An IE algorithm based on hidden Markov model has been studied
and experiments have been carried out to extract name and price fields
for company takeovers and speaker, time, and location fields for
seminar information with satisfactory precisions and recalls [6]. A
graphical statistical model has been used for IE and web data extraction
[3,13] with experiments on extracting job title and course schedules. A
hierarchical, probabilistic TDT model has been studied and deterministic
annealing was used to build the dynamic class hierarchy [2]. News articles
from Reuters newswire service and closed-caption transcripts of CNN
broadcast have been tested [2]. Activity monitoring and its applications
to monitor and predict changes in a stock market have been studied [4].

Related algorithms have been studied and tested on sequential bases
and successes of variable degrees have been achieved. To apply these
algorithms in real world, we study the issues related to implementations
of these algorithms in distributed environments. The issues involved in
our distributed systems, as in most other distributed systems, include
performance, fault tolerance, security, synchronization, etc. In this
study, we focus on performance issues by studying computing times and
communication traffics to reduce costs and achieve optimal perfor-
mances. We present the basic sequential algorithms and design their
distributed schemes that are most appropriate for our applications. We
test our algorithms with simulations on a Linux cluster. Other design
issues will be studied in future work.

Section 2 describes the naïve Bayes text classification algorithm
and its distributed computing. Due to space limit, we describe the
classification algorithms in more detail and present the IE and TDT
algorithms briefly. Section 3 presents the IE algorithm based on HMM

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,
Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Innovations Through Information Technology 367

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

and its distributed scheme. Section 4 formulates the distributed TDT
algorithm. Experiments are included in each section. Section 5 presents
the integration algorithm that brings the three functions together to
save time and communication costs. Section 6 concludes the paper.

TEXT CLASSIFICATION
In this section, we describe the naïve Bayes classifier, expectation-

maximization algorithm applied to use unlabeled documents, and their
distributed scheme.

Document description
Preprocessing on the documents including stemming, stop word

removal is performed before they are used for training and classification.
The attribute value presentation is used to represent document param-
eters, where each word is an index (or key), and the probability
estimation (frequency) is the attribute [12][14]. Suppose our documents

are divided into M classes, },...,,{ 21 McccC = and we have N

training documents },...,,{ 21 NdddD = , each having a class label.

We need a table of N rows and V columns (V is the size of the vocabulary)
to store the frequencies of the words. This table can be prohibitively
large and compact data structures such as hash table can be used to save
space and speed up search. We also need a list to store the estimation
of class distribution.

Naïve Bayes classifier
The naïve Bayesian classifier is based on the generative probabi-

listic model [12], which assumes that each document is generated from

a mixture of components with probability distribution θ . If a document

id was generated by a mixture component jc , then we assign the label

of jc to id , ji cy = . The likelihood of document id is given by,

);|()|()|(
1

θθθ ji

M

j
ji cdPcPdP ∑

=
= , (1)

where)|(θjcP is the class prior probability, with which document

jd is first created by selecting a mixture component.);|(θji cdP

is the distribution with which id is generated by the selected mixture

component jc .

If document id contains words },...,,{ ||21 idii www , suppose

conditional independence, then);|(θji cdP can be expressed as,

);|,...,,();|(||21 θθ jdiiiji cwwwPcdP
i

= ,

∏
=

=
||

1

);|(|)(|
id

k
jiki cwPdP θ (2)

The conditional probabilities);|(| θθ jkcw cwP
jk

= and

the prior class probabilities)|(θθ jc cP
j

= are the parameters that

we need to estimate. Collectively the parameters are represented as,

},...,;,...,{
111 || MMV cccwcw θθθθθ = . (3)

The estimation θ̂ of θ can be accomplished as follows using

Laplace smoothing. For the word probabil i ty estimate
jk cw |θ̂ ,

jk cw |θ̂ ∑ ∑
∑

= =

=

=+

=+
=

V

s

N

i ijiis

N

i ijiik

dcyPdwNV

dcyPdwN

1 1

1

)|(),(

)|(),(1
 (4)

where),(ik dwN is the number of times that word kw occurs in

document id and)|(iji dcyP = is class label of id . And the class

prior probabilities are estimated as,

NcdNcP jijc j
/),()ˆ|(ˆ == θθ , (5)

where),(ji cdN is the number of training document id that are

classified to class jc .

Once we get the estimate θ̂ , the naïve Bayesian classifier uses the

generative model in a reverse way to infer the mixture component from
which a given document is most likely to have been generated. Based on

the maximum a posteriori (MAP) method, document id is classified to

class *j
c , if *j achieves *P by maximizing the following,

)ˆ;|(maxarg* θijij dcyPP == , (6)

and

)ˆ;|(θiji dcyP = ∏
=

∝
||

1

)ˆ;|()ˆ|(
id

k
jikj cwPcP θθ .(7)

Expectation-maximization learning
Naïve Bayesian classifier works fine if enough labeled training

examples are available. When the labeled training data is not enough,
however, it produces poor quality of classification. Labeled training is
sometimes costly. But the number of unlabeled documents is abundant.
The EM algorithm uses only a small number of labeled examples and
produce satisfactory classifications by utilizing unlabeled data [12][14].

EM algorithm iteratively applies MAP estimations on incomplete

data to get a local optimum. First, it learns the parameter estimationθ̂
using the naive Bayesian method on the labeled data lD . Second, the

naïve Bayesian algorithm, equation (7), is used to label each unlabeled

document, from the unlabeled data set uD , yielding a probability-

weighted class label (soft label),)ˆ;|(θij dcP . Third, based on the

newly labeled and the originally labeled documents, the parameter of the

data set ul DDD ∪= is estimated and θˆ̂ is obtained. Now the

second step is repeated, but with θ̂ being replaced by θˆ̂ . Steps two and

three are repeated until θˆ̂ is close enough to θ̂ . The MAP estimation

of θ can equivalently be obtained by maximizing the log-posterior

objective function,

368 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

=)|(log DP θ

+==∑
∈

));|()|(log(
l

i Dd
jiiji cydPcyP θθ

)(log);|()|(log

1
θθθ PcdPcP

u
i Dd

M

j jij +∑ ∑
∈

= (8)

By introducing the class indicator variable Z, where Zzij ∈ is one

indicating that id comes from class jc , and zero otherwise, (8) can be

written as,

);|(log ZDPc θ

∑ ∑
∪∈

=
=

ul
i DDd

M

j jijij cdPcPz
1

));|()|(log(θθ

)(log θP+ (9)

We do not know the values of ijz . Therefore, we use expected

values of ijz computed on current parameters in (9), and get an

approximation of (8). The parameter estimation θ̂ thus obtained is a

local maximum and can be used as substitute for the global optimal

estimation. Let)(ˆ kZ and)(ˆ kθ denote the estimates for θ and Z at

iteration k. Based on data set D, the local maximum log-posterior can
be found iteratively with the following two steps.

E-step: Set]ˆ;|[ˆ)()1(kk DZEZ θ=+ , (7), for soft labels;

M-step: Set)ˆ;|(maxargˆ)1()1(++ = kk ZDP θθ θ , to esti-

mate θ̂ , with (4) and (5) using soft labels. When the parameters are

trained classification can be done with (7).

Distributed classification
 In a distributed environment, an organization (such as an interna-

tional company) has documents across large geographical locations. We
need to train the classifier accounting for all the documents so that
classification in the organization is consistent. One possible solution is
for each distributed site to collect and make available all training
documents and train on them to have global classifier. This scheme would
make the training on each site simple. But synchronizing the training
documents consumes too much communication cost. The second ap-
proach is for each site to train on its local documents and all the sites
combine their local parameters to obtain a global classifier. Parameters
have less volume compared with training documents and hence have less
communication cost.

Still another method is hierarchical where distributed sites are
grouped based on geographical proximity and classifiers are synchro-
nized in each group before global classifier is synchronized. One
advantage of this hierarchical method is that local classifiers can be
computed and made available for classification before global parameters
are reached. Another advantage of this grouped scheme is that in case
that the central server is down, the group based classifier is still available.
When each group is connected via a high speed connection (in the case
where they are located in the same metro area), local computation can
be parallelized and can be sped up substantially. We tested the perfor-
mance through a simulation on a Linux cluster with newsgroup data set
[12,14]. Figure 1 shows the times used to train the classifier parameters

including times of training on each node, sending them to the central
server, and combining them on the central server to derive the global
classifier. Average node-to-node delay is 300 ms (the delay between
Albuquerque, USA and Barcelona, Spain). The x-axis is the total volume
of documents in the training set on each node in 100 mega bytes and the
y-axis denotes the times spent in seconds. It can be seen that when the
number of nodes increases, the time consumed increased (the vertical
distances between the curves became larger) almost quadratically. This
is because that the parameters are two dimensional and combining them
takes quadratic times.

INFORMATION EXTRACTION
In this section, we study how to apply HMM for information

extraction in distributed systems. A HMM (hidden Markov model) is a
Markov model whose states are not directly observable and can only be
inferred from observations. HMM has been applied successfully to
solving a number of language related problems, including speech recog-
nition, named entity extraction, and text segmentation.

IE with HMM
Assume we use an HMM to extract a company’s acquisition price

from an article reporting the related takeover event, we can model the
price tokens (words) as from the target model and the rest as from the
background model. Thus a given document can be viewed as being
generated by a stochastic process that first emits some tokens from the
background model, then emits tokens from the price model (target
model), and then switches back to tokens from the background model
[6]. We extract the symbols associated with the optimal state sequence
and fill in the field in the database. Specifically, we need to find the state

sequence },...,,{ 2 ts ssss = that maximizes the probabil i ty,

),|,...,(21 θwsssP t , (10)

where },...,{ 21 idwwww = is the word observation, θ is the model

parameter.

We build one model for each field to be extracted. The transition
and emission probabilities of a model can be trained using the labeled
documents. Laplace smoothing is applied to calculate the frequencies,
as in (4). The Viterbi’s algorithm is used to solve the training and
inferences in polynomial time. Shrinkage and EM can also be applied to
improve model quality with a smaller number of labeled documents. To
test a given document, we treat the tokens in the document as observa-
tions and find the state sequence that has most probably generated the
observations (10).

Figure 1. Times spent in distributed classification

Innovations Through Information Technology 369

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Distributed IE
In a distributed environment, each node has partial documents for

training and extraction. We let each node extract and fill in part of a
database table, and send them to a central server that combines the
partial tables to form the whole table. Both central server and grouped
hierarchy can be used as in the case of text classification (section 2).
Figure 2 shows the total times spent by the distributed IE algorithm,
simulated on a cluster. Average node-to-node delay is also 300 ms. The
x-axis is the total volume of documents in the training set on each node
in 100 mega bytes and the y-axis denotes the total times spent in seconds.
It can be seen that when the number of nodes increases, the time
consumed increased about linearly. This is due to the fact that combining
the partial tables of a database needs approximately linear time with
respect to the number of nodes, faster than combining the two dimen-
sional parameters for classification and TDT.

TOPIC DETECTION AND TRACKING
Topic detection and tracking (TDT), also called novelty detection,

is a dynamic classification problem. It combines clustering and classi-
fication, and accounts for both content and temporal relationships
among documents. In this, section we study the TDT algorithm and its
distributed computing.

TDT algorithm
A set of topics in a collection of documents is described by a

hierarchy of classes that clusters based on content and contains temporal
information representing changes of events over time. To build the
hierarchy, we can use the classification algorithm (7) in section 1. A
better way is to use deterministic annealing (DA), which usually
converges to a better optimum [2,17]. DA views document clustering as
a random process where the class is chosen randomly according to

)|(ij dcP . It optimizes the parameters of the random process and

maintains the entropy of the distribution)|(ij dcP . DA thus

smoothes the surface on which EM is hill-climbing. The generalized
posterior given by DA is,

)ˆ;|(θij dcP

T
V

t

dwN
jtj

itcwPcP

/1

1

),()ˆ;|()ˆ|(









∝ ∏

=

θθ ,

 (11)
where T is the temperature.

To build the temporal relationship in the topic hierarchy, each
document is clustered separately in time within each topic as a mixture
of Gaussian distribution. We denote the probability with which a

document belongs to a certain topic)|(ij dcP , as jiρ , which is held

constant during our temporal clustering process. The probability that a
document in a class belongs to a time slot can be formulated as

T
jkdjjkjijk ePcePcdeP

i

/1)|()|(),|(τ∝ (12)

∝)|(jkd eP
i

τ
22 2/)(

2

1 jkjkide
jk

σµτ

σπ
−−

where
idτ is the time stamp of document id , and jkτ is the

thk event of class jc . The parameters can be estimated using the EM

method. In the E-step,),|(jijk cdeP is calculated. In the M-step,

ξ̂ , µ̂ and σ̂ are computed according to (13), (14) and (15) based on

estimates of),|(jijk cdeP .

∑ =
∝= D

i jijkjijjkjk cdePceP
1

),|()|(ˆ ρξ (13)

∑ =
∝ D

i djijkjijk i
cdeP

1
),|(ˆ τρµ (14)

∑ =
−∝ D

i jdjijkjijk i
cdeP

1

2))(,|(ˆ µτρσ (15)

After the documents have been temporally clustered using (12), we
can compute the total probability that a document belongs to a specific
event within a topic as,

),|()|(jijkijkijk cdePdeP α= , (16)

where ijkα is the probability of the parent topic of event jke .

Distributed TDT
The distributed TDT computing we designed is for each node to

build its own topic and event hierarchy and send it to a central server
for combining. Hierarchies are represented by tree structures. The
combined hierarchy shows a whole picture of the news stories with
temporal relationships across the global organization. Its time perfor-
mance shows similar patterns as that of distributed classification.

INTEGRATION
The three processing functions of text classification, information

extraction and topic detection and tracking can be integrated together
to save training time and communication costs. For each document we
need to train, the parameters of the three sets of models can be computed
one after the other before the document file is closed. When we send the
parameters to a central server, we can send them together with the rows
of the extracted table in one packet to save traffic. The integrated
algorithm is shown in Figure 3.

Combining the tables in a database can be implemented via database
system functions (e.g., those provided by SQL Server) or using propri-
etary network software. Figure 4 shows the time performance of the
integrated processing. It shows that the total time is less the sum of the
parts.

Using a central server exhibits a single point of failure. We can
provide fault tolerance by deploying a backup server back to back with

Figure 2. Time costs for distributed IE

370 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

the central server. We thus have a simple fault tolerance solution.
The algorithms have been tested with variable degree of accuracies.

The text classification has been tested and achieved 85% accuracy on
the newsgroup dataset [12,14]. The information extraction algorithm
has achieved 71% accuracy, on average, with the seminar information
and company takeover articles [6]. The TDT has worked with precision
and recalls of about 81% on the Reuters newswire and close-caption from
CNN broadcast news [2].

CONCLUSIONS
To better manage and utilize information resource for an organi-

zation, we have studied intelligent text processing algorithms including
text classification, information extraction, and topic detection and
tracking. In order to cope with the distribution of information resources
across large geographical locations, we have studied distributed comput-
ing of the algorithms. Experiments have showed performance improve-
ments through simulation on a computing cluster. The proposed
distributed algorithms are economical with respect to communication
cost and computing time. They also provide easy means of implemen-
tation for fault tolerance.

For our future work, we will explore more statistical models for
intelligent text processing to improve processing quality in distributed
environments.

REFERENCE
[1] Agrawal, R., and Shafer, J. C., Parallel mining of association

rules. IEEE Transaction on Knowledge and Data Engineering, 1996.
[2] Baker, L., D., Hofmann, T., McCallum, A., K., Yang, M., A

hierarchical probabilistic model for novelty detection in text, Proc. of
16th Int’l Conf. On Machine Learning, 1999.

[3] David M. Blei, J. Andrew Bagnell, Andrew K. McCallum,
Learning with scope, with application to information extraction and
classification, Proc. UAI 2002, pp. 53-60, Aug., 2002, Canada.

[4] Fawcett, T., Provost, F., Activity Monitoring: Noticing Inter-
esting Changes in Behavior, Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 53-62, 1999.

[5] Forman, G., and Zhang, B., Linear speed-up for a parallel non-
approximate recasting of center-based clustering algorithms, including
k-means, k-harmonic means, and EM. KDD Workshop on Distributed
and Parallel Knowledge Discovery, 2000.

[6] Dayne Freitag, Andrew K. McCallum, Information extraction
with HMMs and shrinkage, Proc. AAAI-99 workshop on machine
learning for information extraction, July, 1999, Orlando, Florida, USA.

[7] Joshi, M.V., Karypis, G., and Kumar, V. ScalParC: A new scalable
and efficient parallel classification algorithm for mining large datasets.
In Proceedings of International Parallel Processing Symposium, 1998.

[8] Kozlov, A., V., Singh, J., P., A parallel Luatitzen-Spiegelhalter
algorithm for probabil ist ic inference, Proc. of 1994 Conf.
Supercomputing, Washington, D.C., 1994.

[9] Kruengkrai, C., Jaruskulchai, C., A parallel learning algorithm
for text classification, The 8th ACM SIGKDD Int’l Conference on
Knowledge Discovery and Data Mining, July 23 - 26, Edmonton,
Alberta, Canada, 2002.

[10] McCallum, A., and Nigam, K. A comparison of events models
for naive Bayes text classification, Proc. of 98 the AAAI Workshop,
pages 41-48, 1998.

[11] Andrew K. McCallum, Kamal Nigam, Employing EM and pool-
based active learning for text classification, Proc. ICML 1998, pp. 350-
358, Wisconsin, USA.

[12] Mitchell, T. Machine Learning (McGraw-Hill,1997).
[13] Tom Mitchell, Kamal Nigam, Sean Slattery, Learning to

extract symbolic knowledge from the world wide web, Proc. 1998
National Conference on Artificial Intelligence, July 1998, Madison,
Wisconsin, USA.

[14] Nigam, K., McCallum, A., Thrun, S., Mitchell, T., Text
classification from labeled and unlabeled documents using EM, Machine
Learning (Kluwer Academic Publishers, 2000).

[15] Patanè, G., and Russo, M., Distributed Unsupervised Learning
Using the MULTISOFT Machine, Information Sciences, vol. 43 no.1-
4, 2002.

[16] Rabiner, L., A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of IEEE 77(2)., Feb
1989, pp.257-286.‘

[17] Rose, K., Deterministic annealing for clustering, compres-
sion, classification, regression, and related optimization problems.
Proceedings of IEEE, 86(11), pp.2210-2239, 1998.

Figure 3. Integrated processing

Figure 4. Performance of integrated pro

 Integrated_processing()
{
 For each document in training set
 Train parameters for classifier, IE and TDT;
 Build classifier parameters, P;
 Extract fields, T ;
 Build topic hierarchy, H;
 Send P, T and H to central server;
 Central server combines for global T, global H, global P;
 Central server sends global P and H to all sites;
}

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/distributed-data-mining-its-

applications/32375

Related Content

An Optimised Bitcoin Mining Strategy: Stale Block Determination Based on Real-Time Data

Mining and XGboost
Yizhi Luoand Jianhui Zhang (2023). International Journal of Information Technologies and Systems

Approach (pp. 1-19).

www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655

A CSP-Based Approach for Managing the Dynamic Reconfiguration of Software Architecture
Abdelfetah Saadi, Youcef Hammaland Mourad Chabane Oussalah (2021). International Journal of

Information Technologies and Systems Approach (pp. 156-173).

www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-

architecture/272764

Reflections
Andrew Basden (2008). Philosophical Frameworks for Understanding Information Systems (pp. 339-372).

www.irma-international.org/chapter/reflections/28087

The Vital Importance of Faculty Presence in an Online Learning Environment
Ni Chang (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 2661-2671).

www.irma-international.org/chapter/the-vital-importance-of-faculty-presence-in-an-online-learning-environment/183976

Novel Methods to Design Low-Complexity Digital Finite Impulse Response (FIR) Filters
David Ernesto Troncoso Romeroand Gordana Jovanovic Dolecek (2018). Encyclopedia of Information

Science and Technology, Fourth Edition (pp. 6234-6244).

www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-

filters/184321

http://www.igi-global.com/proceeding-paper/distributed-data-mining-its-applications/32375
http://www.igi-global.com/proceeding-paper/distributed-data-mining-its-applications/32375
http://www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655
http://www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-architecture/272764
http://www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-architecture/272764
http://www.irma-international.org/chapter/reflections/28087
http://www.irma-international.org/chapter/the-vital-importance-of-faculty-presence-in-an-online-learning-environment/183976
http://www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-filters/184321
http://www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-filters/184321

