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ABSTRACT
 In this paper we present a new testing strategy that we are calling the
potential context coverage for program units written in algorithmic
programming languages (both ‘conventional’ and object-oriented
ones: Pascal, Fortran, C, Java, etc.). We introduce the notion of context
and potential context for algorithmic programming languages with the
aid of a model for a program fragment, and define a testing strategy in
support of our definition of potential context coverage. A comparison
of this strategy with traditional ones showed that it covers all of them
except all path coverage.

1  INTRODUCTION
Testing software units is a stage in software coding and testing

activity during software development [1]. One category of testing
strategies is structural testing (sometimes called white-box or glass-box
etc. testing) where tests are derived from knowledge of the software
structure and implementation [1-3]. Strategies of this category are
applied individually to every software unit (here a procedure, a function,
and a method of a class are considered as a program unit).

There are different testing strategies to cover the control-flow
structure of a program unit (in terms of specific structural program
models or in terms of programming languages). They differ by efforts
required: a more exhaustive strategy requires a higher minimal number
of test cases needed to satisfy the strategy for a given program unit, and
hence this strategy tests the program unit ‘better’ than one required a
less number of test cases [3]. In general, only a combination of testing
strategies allows examining a program unit with a reasonable level of
confidence. This usually means usage of several different measurement
tools, which is impractical and does not applied in practice.

This paper presents a new testing strategy, the potential context
coverage that takes into account both: the control-flow structure [3]
and some information about program unit variables. It ‘covers’ all
conventional coverage strategies except all path coverage. The strategy
is rather simple to implement, and does not have apparent disadvan-
tages.

2  THE IDEA OF THE STRATEGY
For a long time, people use the term context for their natural

languages. According to [4], this term means ’the words before and after
a word or passage in a piece of writing that contribute to its meaning’.
Linguists use more sophisticated definitions saying that meaning and
value of any language unit have to be strictly defined in the context
(taking into account even social, historical, and religious factors). To
use a similar approach for program unit testing, we need to define strictly
the meaning and values of programming language units and an approach
to use them for program analysis. The so-called language-oriented
approach allows doing it.

The language-oriented approach to software measurement and
assessment (LOA) defines software elements/components and software

measurement notions formally [5–10], and hence it is a sound basis for
definitions of more sophisticated software testing strategies taking into
account both, control and information flows. This paper uses notions
of a simple statement and program unit execution trace defined formally
in [5–10].

Research reports [11–13] present the strategy of the paper in full.

3  CONTEXT AND POTENTIAL CONTEXTS IN A
PROGRAM

There is no consensus to treat the term context in computer science.
There is an important distinction between texts written in natural and
programming languages: the first are read and interpreted simulta-
neously, the second are ‘read’ (compiled) and ‘interpreted’ (executed)
usually in two steps. So values of many variables and expressions are
defined in the program dynamically; different paths can be passed in the
program when the same variables have different values; and in general
it is impossible to find the paths statically, by the text of the program.

Analysis given in [11] allows defining the notion context for a
programming language that is similar to the notion for a natural
language. The main meaning of the notion is to reflect mono-semantic
understanding of some fragment of the continuous information flow in
a program.

We use the term context for a unit of a programming language in
a program (or just context in a program) for a part of an execution trace
of the program that has the following properties:

· The trace consists of a sequence of fragments going through
semantic units of the program text;

· Meaning of all the semantic units is strictly defined in this part
of the trace;

· All variables of the part get defined values when the control goes
through the part.

So a context in a program (i.e., a specific trace, a path passed) is
formed as a result of an execution of the program. Before the execution,
there are potential program execution traces only that all together form
the program control flow.

Then a potential context in a program is a part of a potential
program execution trace, and this part consists of a sequence of
fragments of a potential trace going through semantic units of the
program. This sequence is getting a context if the meaning of all its units
is strictly defined, and all its variables get defined values when the control
goes through the part. If some variables do not get defined before being
used; then corresponding paths (traces) through the program unit are
non-contextual .

A context in a program unit is a path in the program unit that has
been gone between the first statement of the program unit (the entry
to the unit) and its last statement (the exit) during a program unit
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execution, if all semantic units of the program unit had meaning, and all
program unit variables got defined values during the execution.

Then a potential context in a program unit is a path between the
first and the last statements of the program unit that can be passed with
permissible values of program unit variables.

Then one context in a semantic language unit (e.g., in a program
unit) is one path through the unit (the program unit) only. It does not
necessarily cover all the text of the unit (of the program unit). A trace
through-passing a control flow construction usually covers a part of the
construction. So to cover all the text of the unit, we need to consider
several contexts: a set of potential contexts of a program fragment, and
build not separate models of the potential contexts but a model of the
set of potential contexts of a program fragment (in short, a Program
Fragment Model – PFM).

Figure 1 presents a Turbo Pascal 7.0 program unit, potential
contexts and a non-contextual path for it. This program unit has no
semantic sense; all its statements are given to illustrate execution traces
through the unit only. Any potential context (a path) is represented as
a potential Sequence of executed s-statements (see explanations below).

4  A POTENTIAL CONTEXT MODEL
4.1  Principles to Build the Potential Context Model

Let us formulate principles to build a model of potential contexts.

1. The ‘higher-level’ executable semantic unit of a program is a
program unit.
Some part of a program execution trace treated as an execution
trace of a particular program unit can be reduced to a model of this
program unit including complete information about attributes of
variables whose values this program unit returns to a caller. So the
‘higher-level’ model of potential contexts shall be a model of the
set of potential contexts of a program unit (a Program Unit Model,
PUM).

2. Minimal executable semantic unit of a programming language
with complete meaning is a simple statement (see the Note in the
end of the paper; below we use the shortening s-statement).
In general sentences are built from these units. So the ‘lower-
level’ model of potential contexts shall be a model of the set of
potential contexts of a simple statement (a Simple Statement
Model – SSM).

3. A model of the set of potential contexts of a program fragment
(PFM) has to have a description of the set of variables visible in
the fragment and a description of the set of states of used
variables.
As it follows from the definition of a context in a program, any
variable of any program fragment (starting from an s-statement)
has to get a value before any usage of the variable. A possible state
of a variable in the beginning and in the end of a fragment we call
the value definitiveness. The analyser that parses the program
and builds the model assigns values of the state: defined, non-

defined, formal parameter, defined in a subprogram etc. (10
possible values), to the corresponding attributes of the model.

4. The model has to use a common practical approach to test loops.
It is usual for testing strategies not to take into account all paths
through a loop because the number of these paths can be huge.
Usually they consider till three paths through a loop [3]. How-
ever, if the loop body has more complex structure than just a
linear sequence of s-statements, it is not enough to test the loop
‘well’. So we use the same restrictions that are used in the visit–
each–loop coverage strategy:
• for a loop with a pre-condition or a parameter: one
path around the loop body, all possible paths between the first and
the last s-statements of the loop body (including one return to the
first s-statement), and one path with a double pass through the
loop body (i.e., with two returns to the first s-statement) for one
of all possible paths through the loop body;
• for a loop with a post-condition: all possible paths between the
first and the last s-statements of the loop body with a single pass
through the loop body (without return to the first s-statement)
and one any path with a double pass of the loop body (i.e., with
one return to the first s-statement) for one of all possible paths
through the loop body.

5. The process of building the model for a particular program has to
be based on a ‘conventional’ process of program syntactic and
semantic analysis.
Building a model of the set of potential contexts of two sequential
program unit fragments is realised by means of some ‘union’ of
models of these fragments. So building a PUM, we always start
uniting a model of the program unit heading s-statement and a
model of the next executable s-statement or a model of a block.
The result of the union is a PFM that is a model of the set of
potential contexts of an s-statement sequence (an s-Statement
seQuence Model – SQM). This SQM is united with the model of
the next s-statement or the block, etc. Building a model of the set
of potential contexts of a block (a Block Model – BM) is always
started by uniting the corresponding model for the first s-
statement of the block and the model of the next executable s-
statement of the block or the model of the second level block, etc.

4.2  A Potential Context Model
Let us define a general model of the set of potential contexts of a

program fragment – PFM, and then consider peculiarities of those
models for different types of semantic language units (they are always
program fragments).

PFM = (Fragment identification,
Set of variables visible in the fragment,
Set of variable states before execution of the fragment,
Set of potential paths through the fragment,
Set of variables used,
Set of variable states after execution of the fragment)

Fragment identification is an exhaustive description of the posi-
tion of a program fragment and some its attributes.

Set of variables visible in the fragment is an exhaustive description
(for a particular set of tasks solved) of variables accessible by statements
of the program fragment.

Set of variable states before execution of the fragment is the set of
sets of values of the attribute value definitiveness before a fragment
execution for variables accessible by statements of the program frag-
ment.

Set of potential paths through the fragment is an exhaustive
description (for a particular set of tasks solved) of all potential control
flow paths through the program fragment.

Set of variables used is the set of sets of descriptions of variables
used in this program fragment. For each couple (a potential path through
a program fragment, a variable state before execution of the fragment),
there is its own set of descriptions of variables used.

1    procedure EXAMPLE (J  : real;  
2                                          N : integer);  
3    var  I         : integer; 
4           NEW : real; 

begin 
5        for I := 1 to N do 

begin 
6            NEW := 0; 
7            if (I < J) 

then  
8               NEW := NEW + Sin(J) 

else  
9               NEW := NEW + Cos(J); 

end; 
10      writeln(NEW); 

11  end;  

The set of potential contexts 

(1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 11) 

The ‘non-contextual’ path 

(1, 2, 3, 4, 5, 10, 11) 

In this path, the variable NEW 
is used in the simple statement 
10 whose value is non-defined 
to the statement. 

Figure 1. A program unit in Turbo Pascal 7.0 and its potential contexts.
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Set of variable states after execution of the fragment is the set of
sets of values of the attribute value definitiveness after a fragment
execution for variables accessible by statements of the fragment. For
each couple (potential path through a program fragment, variable state
before execution of the fragment), there is its own set of variable states
after potential passing the path.

Formal definitions of all these notions can be found in [11–13].
According to the principles of Sub-section 4.1, there have to be

defined four building processes for four models: for a s-statement, for
a sequence of s-statements, for a block, and for a program unit. Building
the models is the topic for a separate paper [12]. Here we note some
features of the processes only. For example, the model of the set of
potential contexts of an s-statement sequence is defined as follows.

First, we introduce the operation of union (denoted by the symbol
È) to get the model of the set of potential contexts of a s-statement
sequence (SQM) from: (1) two corresponding models for s-statements
(SSM), (2) SQM and the corresponding model of the next s-statement
(SSM), (3) SQM and the corresponding model for the next block (BM),
and SSM and BM.

These unions are denoted as follows.
If there are a s-statement with the number i and the next s-

statement with the number i+1 in a program unit, then the model SQM{i,
i+1} of the set of potential contexts of the s-statement sequence (i, i+1)
is formed as a union of two models: SSM{i} and SSM{i+1}:

SQM {i, i+1} = SSM {i} È SSM {i+1}
Similarly we may write for three other unions:
SQM {i, i+j+1} = SQM {i, i+j} È SSM {i+j+1};
SQM {i, i+j+l} = SQM {i, i+j} È BM {j+j+1, i+j+l};
SQM {i, i+l} = SSM {i} È BM {i+1, i+l}.

Each of these four models is a model for a program fragment, and
hence, they have the structure of PFM. The operation È relates to all
components of the models. When a program unit has been analysed till
the end, the corresponding PUM has been built for it. Then the argument
Set of potential paths through the fragment of the model keeps the set
of all possible paths through the program unit; this set is the set of
potential contexts of this program unit. Full description of all the models
and operations on the models are presented in [12].

5  THE POTENTIAL CONTEXT COVERAGE
STRATEGY

First we need to define two notions: the set of program unit
components that have to be covered during the tests (the minimum
number of test cases required for the strategy [3]) and the set of
components (really) covered during the tests.

Formal definitions of these notions in terms of the set theory and
the measuring language model [5-10] are given in [12].

The test effectiveness ratio (TER) for this strategy is defined as in
[4]:

    

     
  

contextsPotential

contextspotentialCovered
TER =

This metric shows the extent to which a particular set of the test
cases satisfies the testing strategy under consideration.

Thus to get the value of this metric for the potential context
coverage strategy applied to a particular program unit for a particular
set of test cases, there have to be built:

• The set of potential contexts of the program units;
• The set of execution traces for this program unit and for this set

of test cases;
• The set of potential contexts covered by the tests.

Figure 2 presents calculation of the metric for the program unit
shown in Figure 1.

6  COMPARISON OF THE NEW STRATEGY WITH
WELL-KNOWN COVERAGE STRATEGIES

Virtues and shortcomings of this new strategy are analysed in [13].
Here we just note the following.
1. When the set of potential contexts of a program unit is built, the

analyser finds ‘non-context’ paths (and statements) that include
usages of variables before their values have been defined. It allows
finding semantic defects ‘non-initialised variables’ before actual
program unit testing. As a matter of fact, no test cases are needed
to find these defects. Since it is one of the most common and
difficult-to-locate type of defects [1-3], automatic finding of
those defects can allow decreasing the total time of program
implementation and testing.

2. If the potential coverage strategy is applied alone, it allows
testing of a program unit equally or better than application of all
other traditional structure coverage strategies together with the
exception of all-path coverage (see Figure 3: mainly different
strategies supplement each other. None can have the same effect
as the potential coverage can except the all-path coverage; two
last strategies cover all possible components of a program unit or

Figure 2. The potential context coverage metric for the program unit of
Figure 1.

The set of potential contexts 

(1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 11) 

The set of execution traces 

(1, 2, 3, 4, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 10, 11)  

(1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 9, 5, 10, 11)  

The set of covered contexts  

(1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11) 

(1, 2, 3, 4, 5, 6, 7, 9, 5, 10, 11)  

 

TER =
  
  

textsential conSet of pot
xtsered conteSet of cov

  = 2:3 = 0,66  

Figure 3. Test coverage strategies for program units and program unit
(or its control-flow model) components covered when the strategies are
applied.
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its structural model; each other conventional strategy covers one
or few program or model elements/ components only).

3. Efforts to develop static and dynamic components of tools for
implementing and measuring the potential context coverage are
similar to efforts to create similar tools for each conventional
strategy. Since the potential coverage strategy is more powerful,
it is reasonable to develop and use those tools for this strategy
only.

4. In general, efforts to develop the complete set of test cases to
cover all potential contexts in a program unit according to the
new strategy are higher than for any conventional test coverage
strategy (except all-paths coverage) because the number of paths
tested is bigger. However the program unit is tested better because
the number of paths tested is bigger.

CONCLUSIONS
The paper presents a new structure coverage strategy for program

units of imperative programming languages, the potential context
coverage.

This strategy allows the same or better testing of a program unit
than all conventional coverage strategies applied together except all-
paths coverage. The strategy does not have apparent disadvantages.

All notions used to define this strategy are formally defined. It
allows rather simple and unambiguous implementation of the strategy.
Efforts to develop the corresponding tools are comparable with ones to
create similar tools for conventional strategies.

Note: LOA considers programs as being constructed from simple
statements instead of statements. The simple statement is [7–10]: (1)
a procedure/function declaration (heading), (2) a dynamic variable
declaration, (3) a ‘functional’ statement of an algorithmic program-
ming language (in particular, an assignment and data input/output
statement), (4) the predicate part of a ‘complex’ control statement (if-
part of if-statement, for/while/until-part of a loop statement, case-part
of a case-statement), (5) goto-statement, (6) call-statement and some
other statements. The measuring model of the construction Simple
statement is a component of the measuring language model of an
algorithmic language.
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