
Innovations Through Information Technology 517

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ODIL: Ontology-Based
Document Interrogation Language

Soraya Abad-Mota
abadmota@usb.ve, Universidad Simon Bolivar, Departamento Computacion, Aptdo 89.000, Baruta, Venezuela, Phone: 58-212-906-3266,

Fax: 58-212-906-3121

Paul A. Helman
helman@cs.unm.edu, University of New Mexico, Computer Science Department, 301G Farris Engineering Center, Alburquerque, NM, 87131, USA,

Phone: 1-505-277-2967, Fax: 1-515-277-6927

1 INTRODUCTION
The context for this research is an information processing scenario

with data from different sources available on the web. We are mostly
concerned with textual documents in any of their three possible forms:
structured (pieces of text explicitly tagged), semi-structured (pieces of
text with some implicit structure, which may be given by lexicographic
clues contained in the text), and free (neither semi-structured nor
structured). It is important to note that our main interest is in text
sources and not semi-structured data, as defined in the semantic web
literature ([1], [2], and [3]). Our architecture is applicable to
semistructured data, like the ones found in html or xml sources, but our
experiments are on semi-structured text, as defined above.

The content of the textual documents is to be made available to
many users, through a simple interface language based on the relevant
concepts in the domain of the documents. This way, the users will not
be required to know about complex data structures or representations of
the data contained in the documents.

Given the requirements stated above, the main goal of our project
is to design a system which will extract the relevant information from
the textual sources so that “semantic queries” involving some knowledge
about the universe referred to in the documents can be answered.

In a recent paper ([4]) the Document Interrogation Architecture
(DIA) was presented. The purpose of DIA is to extract information from
a set of documents, to structure and store that information in a relational
database, and to allow the interrogation of the documents using a simple
semantic language which is processed against the relational database.
The database contains the instances of the concepts referred to in the
documents; an ontology is created with these concepts and can be
extended using special language constructs.

The novelty of DIA’s approach is that the database is not the source
of the truth; instead, the documents hold the real content for the
answers; these answers are anticipated by extracting relevant data from
the documents and structuring them in the form of a relational database
(RDB).

The set of documents is divided into types of documents, for each
of which an Extended Entity-Relationship (EER) conceptual schema
of the contents of the document type is built (see [5] for a description
of the Extended ER model we use). This approach is not compatible with
the traditional “closed world assumption (CWA)” from deductive
databases and artificial intelligence, it needs a more appropriate assump-
tion, for example the “local closed world information (LCW)” defined
in [6], but this issue is beyond the scope of this article.

The simple semantic language of DIA is ODIL (Ontology-based
Document Interrogation Language), it has an SQL-like syntax, but the
targets of a query written in this language are concepts from the
ontology, whereas the targets of an SQL query are relational tables. The
subject of this paper is a brief description of ODIL emphasizing its
interaction with the information extraction components of the archi-
tecture.

The paper is organized as follows. In section 2 we describe the
database, the ontology and the high-level activities of DIA. The

language is specified in section 3. Section 4 highlights the interaction
between ODIL and the information extraction processes of DIA. Section
5 contains the conclusions of this work.

2 ONTOLOGY AND PHASES OF THE ARCHITECTURE
We cite from [7] a general accepted definition of a computer

ontology: “agreement about a shared, formal, explicit and partial
account of a conceptualization”. Furthermore, Meersman et al. add: “an
ontology contains the vocabulary (terms or labels) and the definition of
the concepts and their relationships for a given domain.”

Meersman et al. ([7]) contrast data modelling with ontology
engineering and highlight several differences between data models and
ontologies, in our work we try to combine both worlds. An ontology is
more flexible and general as the basis of a query language, but a database
and a query processor which evaluates queries against it is easier to
implement.

Our approach is to define a query language based on an ontology,
map this ontology to a relational database, and evaluate the queries
against the database using the mapping. To apply this approach to DIA,
a global EER schema for all the document types is translated into the
schema of the RDB where the data extracted from the documents will
be stored. This global schema is mapped into the ontology. The user
poses queries to the documents based on the concepts defined in the
ontology, she may also define new concepts; for the latter a mapping
to the EER schema must be defined. An ontology-based query is
translated into one or more RDB-based queries in order to obtain an
answer from the data in the RDB. This translation is supported by the
mappings from the ontology to the EER schema and from this schema
to the RDB.

The query processing in ODIL requires two fundamental mappings:
from the EER schema to the ontology (used to load the initial ontology)
and from the ontology to the EER schema which is needed when the user
defines new concepts in the ontology, to allow queries on these new
concepts. These mappings are fully specified, but are not included in this
paper for space reasons.

To generate the initial ontology we need to map each concept in
the global conceptual schema into concepts in the ontology. Before
loading the ontology, the relational database is filled with data by a broad
information extraction procedure. The goal of the initial ontology load
is to populate the ontology with all the concepts present in the relational
database, which were obtained from the original documents. In a way,
the concepts in the ontology are like views over the global EER schema.

In essence, the fundamental issues around DIA’s purpose are:

• The creation of an integrated conceptual schema of the contents
of all the documents. Each document type has a schema and one
document type may have many documents as instances of that
type. Each document belongs to only one type.

• The automatic extraction of data from the documents and their
structuring in a relational database.

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

518 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

• The mapping of the relational database to an ontology and
viceversa, to allow queries based on the ontology.

• The focused information extraction from the documents after
determining that there was not enough data in the RDB to answer
some query.

These issues are dealt with in the phases of the architecture
described next.

I. Data Preparation: This phase is performed manually and
consists of the document type schema creation and the global schema
integration activities.

II. Data Extraction: In this phase the actual extraction of data
from documents is performed, involving the following steps:

1. Broad Information Extraction (BIE). The BIE component is a
model-based information extractor, it has some similarities with
the DEG approach proposed in [8]. This component does multislot
extraction with as little human intervention as possible.

2. Database Population (DBP). The output of the BIE module is data
extracted from the documents. Once the extracted data elements
are related to the EER schema elements (in the BIE step), the
mapping from the EER model to the relational model (necessary
for loading the data) is fairly simple.

3. Ontology Generation (OG). The RDB loaded in the previous step
is the basis for building the initial ontology. This process needs
a mapping from the EER model concepts to the ontology
concepts. In order for this to be correct, the relational database
model that is implemented must correspond to the ER model
resulting from the integration of the document type conceptual
schemas. After the initial ontology is generated, the user of the
query language extends its contents by using the appropriate
constructs of the language.

III. Document Interrogation: The ODIL language has two sets
of constructs, one for defining new concepts that will extend the
ontology and can later be used to ask queries, and another set for asking
the query. The processes performed in this phase are:

1. Knowledge Processing.
a) Knowledge acquisition: involves the analysis of the query Q to
separate the defined concepts from the concepts used to interro-
gate. The defined concepts are used to augment the ontology and
a mapping is established between the newly defined concepts and
the existing ones.
b) Query Translation: maps the concepts used in the interrogation
part of Q to concepts in the RDB, to transform the original
semantic query into one or more subqueries over the RDB.

2. Approximate Query Processing. The processing of queries in
ODIL should be flexible to provide approximate answers in the
absence of accurate data (see section 4). This processing requires
a measure of goodness of the answer or a measure of accuracy of
the data in the RDB. With such measure the system can reason
about the existing data and provide an approximate answer. We
are planning on developing our measure based on the works of
Levy [9] and Lambrecht et al. [10].

3. Focused Information Extraction (FIE). After a user has received
an approximate answer to a query Q, the system may use Q to
return to the documents, looking for additional data to extract.
Hopefully, the additional information extracted will help return
a more accurate answer to Q.

3 THE DOCUMENT INTERROGATION LANGUAGE
This section presents the two kinds of clauses of ODIL.

3.1 Concept definition Clauses
A new concept is defined by specifying the following aspects:

• A name for the concept.
• A definition based on one of the abstractions available, namely:

primitive concept, aggregation, generalization, specialization,
and enumeration. We define the details of this definition below.

• The source of the concept indicates where the concept was
originally defined; if it was defined by using the special concept
definition clauses, the value assigned to source is ontology,
otherwise, the value of source is RDB.

• A set of instances that belong to this new concept. When defining
a concept by enumeration the instances already exist in the
relational database. In this case, we only need to refer to the name,
the row id or the object id of these instances.

• A set of explicit constraints, not covered by the inherent
constraints of the ontology, that must hold for the concept.

• A list of synonyms for the name of the concept. This list must
be disjoint with respect to all other names and synonyms in the
ontology.

• A descriptive phrase in natural language to describe the new
concept. The phrase will be useful when doing focused informa-
tion extraction, as a hint to find relevant data in the documents.

The definition of the new concept using the abstractions is done
with the following constructs:

1. Primitive concept. This abstraction is used when defining a new
concept by specifying its name. This abstraction is useful to
define properties of other concepts. For example, the concepts
name, population, abbreviation, and geographical location may
be defined as primitive concepts.

2. Aggregation. Defines a new concept A as an aggregate of some
existing concepts; the notation is: A = (C1, C2, …, Cn), where the
Ci’s are concepts, either primitive or non-primitive, already
defined in the ontology. For example, we may define the concept
country as an aggregation of name, population, abbreviation of
the country’s name, and geographical location; according to our
notation we write this definition as follows: country = (name,
population, abbreviation, geographical location), in the ontol-
ogy. Two other examples are, Institution(Iname, IType) and
belongs(institution, country).

3. Generalization. This abstraction defines a general concept, asso-
ciated with some other concepts that are specialized versions of
it. The notation for this abstraction is: G ⊇ S1 ∪ S2 … ∪ Sn, where
G is the new concept being created with this abstraction. Con-
versely, by using specialization we may define a new concept as
a specialized version of an existing general concept. Given the
above definition of Institution, we may now define memberOfIstec
⊆ Institution.

4. Enumeration. A concept is defined by enumeration when explic-
itly listing all its instances. The notation for defining a concept
C as an enumeration of instances is: C = {I1, I2, …, In}, where the
Ij are instances of a concept existent in the relational database
or in the ontology. After we have defined region as an aggregation
of country, we may define AndeanRegion as an instance of region:
region = {AndeanRegion} and later, as an enumeration of five
countries:

AndeanRegion = {Bolivia, Colombia, Ecuador, Peru, Venezuela}.
These two definitions of Andean Region are consistent.

It is important to note that the enumeration construct allows the
definition of a concept by extension, whereas all the other abstractions
define a concept by intension. The same concept that is defined by
extension, with an enumeration, must be defined by intension with one
of the other abstractions, in order to have a complete definition of it,
and to be able to do the mappings between the ontology and the RDB
properly. The enumeration abstraction is useful because it ties the

Innovations Through Information Technology 519

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

concepts in the ontology with actual data in the RDB. The other
abstractions are useful to describe the nature of the concept being
defined.

The only instances contained in the ontology are those used in
definitions by enumeration. An instance itself is not really present in
the ontology; only a reference to the actual data in the RDB is what is
stored in the ontology.

3.2 Inquiry Clauses
There are two main forms of a query in this language given by the

following syntax:
List | Count < target concept > instances
show (property, option)*
such that < condition >

where

< target concept > is a concept that exists in the ontology. This
concept should be defined by aggregation, or generalization, or special-
ization.

The show and the such that clauses are optional.

< property > is a primitive concept which must be a property of the
target concept; for each property the query processor will find (or
compute) its value and provide it with the answer; in the future it might
be useful to allow a function applied to the property.

< option > the possible values are: for each and for all; defines if
the property is to be computed for each instance in the output or if it
will compute a single value for all the instances.

* means that there may be several pairs (property, option)
associated with the same target concept.

< condition > is an expression that qualifies the instances of the
target concept that are selected to be in the answer to the query.

The user may build a compound condition using a combination of
the conditions specified above and linking them with boolean operators.
For example, a possible query is:

List institution instances
such that c ∈ Country AND c.Cname = ‘Venezuela’
 AND i ∈ institution AND belongs(i,c)
 AND m ∈ memberOfIstec AND m IsA i

4 INTERACTION WITH INFORMATION EXTRACTION
In the non-traditional approach to query processing that we plan

to do with ODIL, we assume that there might not be enough information
in the database to provide a precise answer to a query. For example, the
total number of Computer Science students in Venezuela, cannot be
answered precisely unless we have absolute numbers for all Venezuelan
institutions. But if we have these data for two Venezuelan institutions,
we have a portion of the required answer. So instead of giving an empty
answer, we could reply: “the number of Computer Science students in
Venezuela is greater than or equal to the number of Computer Science
students in these two Venezuelan institutions for which the database has
data”. This answer is an approximate answer to the original query. It
bounds the value of the precise answer and in this sense it is an
approximation. In order to provide these kinds of approximations, the
query processor must reason about the queries using the ontology, the
knowledge about the domain, and metadata describing the database and
the documents. Having this mechanism available allows us to go back to
the original textual documents to try to find more data to improve the
approximate answers.

When a query requires approximate processing, after the approxi-
mation has been provided, the query is analyzed against the information
extraction component. During this analysis the system decides if there
is more information in the original documents which could have
improved the answer to the query. If this is the case, additional
information is extracted to populate the database. In other words, we

want the system to learn from the queries it cannot answer precisely, in
order to provide better answers to future queries. This additional process
of extraction is what we called focused information extraction in section
2.

There is also an issue of levels of abstraction related to the
interaction between information extraction and query processing. For
example, we might decide how to aggregate the information extracted
from the documents based on the queries we encounter. If we get mostly
queries about Computer Engineering and Computer Science combined,
we might decide to aggregate the individual data about these two majors
for all institutions. Therefore, when we do information extraction from
the documents, there is a decision to be made regarding the level of
aggregation of the data to populate the global database. On the other
hand, if we do have aggregate information for one institution, for
example, the total number of undergraduate students, we can use
statistical techniques (see [11] for an overview of these techniques) to
try to guess the number of undergraduate students in Computer Science
for that institution.

5 CONCLUSIONS
The work presented in this paper is part of the development of the

DIA Architecture, which was introduced in [4] and allows high-level
queries about the contents of a set of documents. The queries are
processed against a relational database loaded with data automatically
extracted from the documents.

The current paper contains the specification of the interrogation
language of the architecture, ODIL, which is a high-level semantic
language for interrogating documents. ODIL combines the abstraction
level of an ontology with the advantages of query processing against a
relational database. The key for doing this is the definition of appro-
priate mappings between the conceptual model of the contents of the
documents and an ontology, that defines the relevant concepts and their
relationships. The underlying goal of DIA is to build a system which
requires as little human intervention as possible, and that can extract
information from textual documents from any domain. The only
required manual step is the construction of an integrated data model of
the document types that will be interrogated.

ODIL is a very simple language, with a syntax similar to SQL, which
operates on concepts existing in an ontology rather than over relations
of a RDB. The most relevant aspect of the language is not its syntax or
its expressive power; what is most attractive of this work is the use of
this simple language and the other components of DIA to explore the
interaction between information extraction and query processing. The
architecture provides a mechanism to extract data automatically from
textual documents and to build an ontology with them. The ontology is
the basis for querying the documents and the reasoning about the answers
to a query triggers focused information extraction which is guided by the
query.

REFERENCES
[1] Daniela Florescu, Alon Levy, and Alberto Mendelzon, “Data-

base techniques for the world-wide-web: A survey,” SIGMOD Record,
vol. 27, no. 3, pp. 59-74, September1998.

[2] Nabil R. Adam, Vijayalakshmi Atluri, and Igg Adiwijaya, “SI in
digital libraries,” Communications of the ACM, vol. 43, no. 6, pp. 64-
72, June 2000.

[3] Dieter Fensel, James Hendler, Henry Lieberman, and Wolfang
Wahlster, Eds., “Spinning the Semantic Web”, The MIT Press, 2003.

[4] Soraya Abad-Mota and Paul A. Helman, “Dia: A document
interrogation architecture,” in Proceedings of the Text Mining Work-
shop in conjunction with the Sixth Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD-02), 2002, pp. 35-45.

[5] Ramesz Elmasri and Shamkant Navathe, “Fundamentals of
Database Systems”, AddisonWesley, third edition, 1999.

[6] K. Golden, O. Etzioni, and D. Weld, “Omnipotence without
omniscience: Efficient sensor management for software agents,” in
Software Agents. Papers from the 1994 Spring Symposium (Technical
Report SS-94-03).

520 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

[7] Peter Spyns, Robert Meersman, and Mustafa Jarrar, “Data
modeling versus ontology engineering,” SIGMOD Record, vol. 31, no.
4, pp. 12-17, Dec. 2002.

[8] D Embley, D Campbell, Y Jiang, S Liddle, D Lonsdale, Y Ng, and
R Smith, “Conceptual-model-based data extraction from multiple-
record web pages,” Data and Knowledge Engineering, vol. 31, no. 3, pp.
227-251, November 1999.

[9] Alon Levy, “Obtaining complete answers from incomplete
databases,” in Proceedings of the 22nd VLDB Conference, 1996.

[10] Eric Lambrecht and Subbarao Kambhapti, “Planning for
information gathering: A tutorial survey,” Tech. Rep. 96-017, Arizona
State University, May 1997.

[11] Soraya Abad-Mota, “Approximate query processing with
summary tables in statistical databases,” in Proceedings of the 3rd
International Conference on Extending Database Technology. Lecture
Notes in Computer Science No. 580. 1992, pp. 49-515, SpringerVerlag.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/odil-ontology-based-document-

interrogation/32415

Related Content

Model-Driven Engineering of Composite Service Oriented Applications
Bill Karakostasand Yannis Zorgios (2011). International Journal of Information Technologies and Systems

Approach (pp. 23-37).

www.irma-international.org/article/model-driven-engineering-composite-service/51366

Digital Video Watermarking Using Diverse Watermarking Schemes
Yash Gupta, Shaila Agrawal, Susmit Senguptaand Aruna Chakraborty (2018). Encyclopedia of Information

Science and Technology, Fourth Edition (pp. 4872-4883).

www.irma-international.org/chapter/digital-video-watermarking-using-diverse-watermarking-schemes/184191

Team Characteristics Moderating Effect on Software Project Completion Time
Niharika Dayyala, Kent A. Walstromand Kallol K. Bagchi (2021). International Journal of Information

Technologies and Systems Approach (pp. 174-191).

www.irma-international.org/article/team-characteristics-moderating-effect-on-software-project-completion-time/272765

Scientific Principles Applied to Design-Type Research
 (2012). Design-Type Research in Information Systems: Findings and Practices (pp. 156-178).

www.irma-international.org/chapter/scientific-principles-applied-design-type/63110

Sheaf Representation of an Information System
Pyla Vamsi Sagarand M. Phani Krishna Kishore (2019). International Journal of Rough Sets and Data

Analysis (pp. 73-83).

www.irma-international.org/article/sheaf-representation-of-an-information-system/233599

http://www.igi-global.com/proceeding-paper/odil-ontology-based-document-interrogation/32415
http://www.igi-global.com/proceeding-paper/odil-ontology-based-document-interrogation/32415
http://www.irma-international.org/article/model-driven-engineering-composite-service/51366
http://www.irma-international.org/chapter/digital-video-watermarking-using-diverse-watermarking-schemes/184191
http://www.irma-international.org/article/team-characteristics-moderating-effect-on-software-project-completion-time/272765
http://www.irma-international.org/chapter/scientific-principles-applied-design-type/63110
http://www.irma-international.org/article/sheaf-representation-of-an-information-system/233599

