I DEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5102

| dentifying and

Addressing the

Extra Issues Involved in Assuring
Quality of Client-Side Reflective
and Dynamic Web Applications

M. Sh. Aun
Nagoya University, Dept. of Information Engineering, Nagoya City, Japan, Sharaf @agusa.nuie.nagoya-u.ac.jp

S.Yuen
Nagoya University, Dept. of Information Engineering, Nagoya City, Japan, yuen@nuie.nagoya-u.ac.jp

K. Agusa
Nagoya University, Dept. of Information Engineering, Nagoya City, Japan, agusa@nuie.nagoya-u.ac.jp

ABSTRACT

This paper identifies the extra issues involved in assuring the quality
attributes of Client-side Web Applications (CSWAPS) and then presents
an approach for addressing such issues. The approach combines static
(preprocessing) and dynamic processing together with features
engineering techniques. The effectiveness of our approach is in the sense
that, it provides opportunities for better analysis that can facilitate the
debugging of client dynamic-enabling components and the validation
process or conformance to standards of HTML components. The inherit
advantages of our approach enables it to be helpful for assuring several
other quality attributes.

INTRODUCTION

Web applications, nowadays, impose some entirely new challenges
in the world of software quality. Assuring their quality attributes
involves several extra issues over assuring the quality attributes of stand-
alone traditional applications. These extra issues are due the fact that
Web applications differ from traditional software applications in
several critical dimensions [3]. Moreover issues like the coexistence of
multiple technologies in an application, the immediate interpretation
feature, the reflectiveness property of the languages used, the high
volatility and the unpredictability of the Run-Time Environments
(RTEs) used have lead to the fact that, trying to make a pure transpo-
sition of quality assurance techniques (like other techniques [10]) from
software engineering to the Web engineering is both difficult and
inadequate.

To support the design phase, several frameworks, architectures,
and models, such as those described in [2] have already been designed and
proposed. As for other phases, only few works like [4], [5], [6], and [7]
focus on some aspects related to automated data collection and data
analysis considering the client-side as pure presentation layer. In fact
researches [8] have shown that no automated support exists yet for
anything more than basic HTML editing and barely any CASE tool
supports advance Web-based applications development. Thus, several
issues still have to be studied well and more specific approaches are
required for assuring quality attributes of Web applications.

This work represents an on-going effort for developing a com-
puter-aided environment to support the construction of high quality
Web applications. In this paper, we identify the specific extra issues
involved in assuring the quality attributes of the CSWAPs over stand-
alone applications and then present an approach for addressing such
issues. The aim of this work is at identifying the extra issues involved
in assuring the quality attributes of CSWAPs and on the set of compo-

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour.

nents that incorporate the essential architecture design of an environ-
ment dedicated for addressing such issues. The focus is on the client-side
applications assuming the result of any computation at the server-side
to be web pages that have to be sent and presented to the client.

In this work we go beyond our previous work [9] by scaling it up
to deal with a wide range of applications and provide opportunities for
better analysis that can not only support debugging but also conformance
to standards. In addition to combining static (preprocessing) and
dynamic analysis, we exploit the benefits of features engineering [11]
in order to deal with a wide range of applications.

Section 2 identifies the extra issues involved in assuring the quality
attributes of CSWAPs. In Section 3, our approach for addressing such
issues is described. Section 4 puts the proposed approach in practice.
Section 5 discusses the characteristics of our approach and Section 6
compares it with other related works. Finally the paper is concluded with
a conclusion and future directions.

IDENTIFYING THE EXTRA ISSUES

Assuring quality of CSWAPs involves several extra issues over
assuring traditional stand-alone applications. These issues may include
the following:

. The methodology has to be able to fill the analysis gap due to the
lack of compilation and the type-less property of the languages
used. Client enabling components are usually immediate inter-
preted. Immediate interpretation means, traditional compiling
techniques are not available resulting in lack of type checking
techniques, for example. This also means that bugs or other
failures are only noticed during run-time. Moreover, Web script-
ing languages, like other scripting languages [12], are usually
type-less. This implies that all variables look and behave the same
so that they are interchangeable. Such feature has penalty: at
time we think a variable or an expression has a certain type or data
in it, when in truth, something entirely different in there.

. The methodology has to be capable of overcoming the challenges
introduced by the reflective and dynamic properties of the
applications. Due to the first property, a program can change
itself or generate new ones making the state of the program to
be a combination of both the global variables and the program
itself. Web RTEs also are much more volatile as web changes
tremendously over the course of a few milliseconds. More

Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

concurrent activities are involved on the web. The more dynamic
the application is, the more challenges in assuring its quality.

. The methodology has to provide some mechanisms for
controllingOprogram execution so that the developer can inves-
tigate the state ofOthe program at certain points during execu-
tion. Such mechanisms have to be platform-independent.

. The methodology has to be capable of separating useful features
out of the implementation artifacts dealing with the complexity
introduced by the coexistence of multiple technologies on the
web. A primary benefit to be gained from separating features out
of the implementation artifacts is to facilitate both debugging and
validating client-enabling components of the application under
consideration.

. Another specific and very important requirement is that, the
methodology should be able to cooperate with its surrounding
environments such as the browsers and be able to coordinate it
activities with them. Scripting objects, as an example, are mainly
environmental objects rather than language created objects.
Thus, any failure due to manipulating them can’t be treated far
from the environment, which creates such objects.

In addition to these issues and in order to deal with wide range of
applications, the methodology has to be capable of restructuring the
base-code. Unlike traditional programs, the source code of CSWAPs can
be scattered over and generated at several layers of the Web architecture.

THE APPROACH FOR ADDRESSING THE ISSUES
Having introduced the extra issues in assuring the quality of
CSWAPs, we now proceed to describe our approach for addressing such
issues. To address the challenges and to fulfill the specific requirements,
our approach combines four main complementary sets of techniques.
These are: features separation, preprocessing, dynamic processing,
validating, and base-code restructuring techniques. This paper focuses
on the first three techniques introducing others for the purpose of
completeness. We assume the result of any computation at the server-
side to be web pages that have to be sent and presented to the client.
3.1 The Approach Reference Model
The approach reference model consists of five main complemen-
tary and interacting components, Fig. (1), and will operate with the
guidance from the developer. These components are: features separator
component, preprocessing component, dynamic processing compo-
nent, validation component, and base-code restructuring component.
Dynamic preprocessing component involve: debugging and testing
library functions, interpretable and code extended code re-generator,
and interpreting facilitator sub-components. Each of these components
has its own purpose and function as described briefly next. More detailed
description will be presented in Section 4.

3.2 Components and Their Functionalities
3.2.1 Features Separator

This subsystem is responsible for identifying and separating useful
features out of the implementation artifacts of an application. A
primary benefit to be gained from separating features out of the
implementation artifacts is to facilitate the debugging process of client
dynamic-enabling components.

Two categories of features represent the output of this subsystem.
The first category (type-A) is those features that contain dynamic-
enabling components (i.e. scripts together with their related rendering
components). The second category is those features with no scripts.
This categorization is necessary, as those features containing dynamic
components must be treated differently while assuring quality.

3.2.2 Preprocessing

Preprocessing is necessary for filling the analysis gap due to the lack
of compilation. As indicated above, client-enabling components are
usually immediate interpreted. In addition to help in eliminating both
overall and silent bugs[9], preprocessing can serve other purposes.

Innovations Through Information Technology 913

Figure 1. Approach reference model

Deb. & test
Functions
O] T ————— 1]
g z @ gz £
2 & = & 5
e - g, 2| fe8)]E2 23 @)
restrus;:ured = E. = %E g2 = E =
e ETEl Ve |BE EEE
i gz Bg R
NN - - R z 2 2
‘@ baselcade | £ & B
I"8) restducturing |
e oobomiye
1
1 Silent
1 Bugs & fualts 7

o)
pajexaual

overall
> bugs & famlts
/ Suggestion

Run- time

Elle

—1

:

In ing
Facilitator

| Machine code - Hemory

These may include code beautification, documentation and checking
for cross-browsers scripting.
This subsystem involves two subcomponents. These are:

Overall Checker and Components Extractor: Features that con-
tain dynamic-enabling components represent the input to this
subsystem. The source code of the whole feature should be read,
overall checked, and the embodied component (such as script
code) should be extracted. The output is the script components
in addition to overall bugs identified in a feature. Compared to
available checking tools such as weblint [13], this subsystem has
also to extract the embodied dynamic-enabling component for
further processing.

Silent Faults Eliminator: This component concentrates on elimi-
nating silent bugs [9]. Such category causes the RTE neither to
run the application nor to produce any helpful error messages. In
such case pre-processing is needed as such category of bugs cannot
be eliminated by other ways.

3.2.3 Dynamic Processing

Dynamic processing serves several purposes. It identifies and
eliminates active or behavioral bugs, provides the necessary mechanisms
for controlling program execution while debugging, and helps in over-
coming the challenges due to the dynamic property of the applications.
It involves three subcomponents. These are:

. Library Functionalities: Devoted for debugging functionalities
realized as functions that can be augmented within the source code
during the expansion process. The functions must include special-
ized code for inspecting both objects and scalar variables.

. Interpretable and Extended Code Re-generator: The inputs to
this part are the source-code of the features containing scripts,
the required debugging functions and the developer options
(suggestions). The source code isto be expanded and the debugging
functions to be augmented. Developer options are necessary for
providing more flexible debugging options. The output of this
part is the extended code, which is the original source code plus
the required functionalities that facilitate the debugging.

. Code Interpreting Facilitator: This part is necessary for facilitat-
ing the execution of the applications directly from the context
of the debugger. It works as an interface between the extended
code and the interpreter.

3.2.3 Validating Interface

This component passes the source code of the input features (type-
B) through a special program that compares the code against standards-
based measures. It checks syntactic accuracy, structural integrity and
conformance to standard requirements. With separating of features,
many exiting and emerging tools by W3C and others can be utilized for

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

914 2004 IRMA International Conference

assuring conformance to standards. Nowadays, for example, there are
several available tools like [14] by W3C to check HTML documents,
others like [15] to make them tidy, etc.

3.2.4 Base-code Restructuring

Unlike traditional programs, the source code of CSWAPs can be
scattered over and generated at several layers of the Web architecture.
Therefore, to deal with a wide range of applications, the approach must
involve the use of code restructuring techniques. This is the main
purpose of this subsystem.

4. THE APPROACH IN PRACTICE

To prove the effectiveness of our approach, we intended to provide
some examples clarifying the concepts with the help of a prototype-
debugging tool being implemented to work within the context of the
approach. However due to the lack of space, we provide more detail
explanations regarding the techniques involved.
4.1 Features Separation
Due to the different ways by which the code of Web applications
is organized, several main categories of features can be identified and
separated. Sometimes features are encapsulated in a page or a set of
pages. Other times, a single page may include code associated with
multiple features. Yet another cases, code contributing to a feature may
be found at the client, at the server, or it may be split between the client
and the server. For this reason, several categories of features can be
identified. These are: features tangled in client-side, features tangled in
server-side, and features tangled across client and server sides.

Fortunately, from th e viewpoint of CSWAPs, an application can
be regarded as a set of static/dynamic Web pages that are usually written
in or dynamically created in HTML code containing scripts and other
client enabling technologies. In contrast to procedural applications,
where a specific functionality is often identified with a subsystem or
module, the functionality in client-computation of Web applications
comes from the interacting of pages. Accordingly, there are two main
categories of features. These are:

. features tangled in a page.
. features tangled across pages.

4.1.1 Identifying Features Tangled in a Page

Web pages usually consist of code that contain a variety of
components (such as scripts, Applets, HTML components, images,
audio, etc.), which are usually realized with different categories of
languages. Therefore, identifying features tangled in a page can be
accomplished by treating a page as a collection of fragments rather than
a single entity. These fragments may include:

. fragment type-O: only mark-up components.

. fragment type-1: a script component plus its related rendering
components.

. fragment type-2: an Applet component plus its related rendering
components.

. fragment type-3: mark-up components plus a mix of related

components such as an Applet plus a script that communicate
with each other.
. fragment type-4: other components such as video, audio, etc.
Therefore, the existence of multiple technologies in a web page can
be considered as the key issue for separating of features tangled in a page.

4.1.2 Identifying Features Tangled Across Pages

For the case where features can be tangled across pages, Fig. (2)
shows an example.

In this example, there are two features tangled across pages. These
features are: (1) combination of page x plus a subset of page z where x
appears and (2) combination of page y plus a subset of page z where y
appears.

Figure 2. Features tangled across pages

“HTHL*
5 <FRAMESET ...?>
- <frame sro="ux, html"
E <frame src="u, html" >
£ | «/FRAMESET>
< html:
<HTHL> <HTML>
<hodp: <hodp:
L e e
| iscript: <zoriphr =
g | function a} function b} ;
[v
<fseriptr <fseriptr =
</ badp: <Sbadp:
</ htmle </htmlz

4.2 Preprocessing

An example where the RTE neither tells what is wrong nor executes
the script (i.e. a silent bug) is when a reserved word is used as a function
name, like the word case.

4.3 Dynamic Processing

Dynamicity at the client, which is mainly caused by script compo-
nents, is adequately managed as the subsystems can cooperate their
activities with the RTE. The approach can augment the required
functionalities for assuring the quality attributes to the components
themselves. This allows them to be uploaded by the interpreting
facilitator without the need for extra mechanisms or techniques.

4.4 Base-code Restructuring

Currently, this subsystem is still under development but its subcom-
ponents have been identified. These are code re-organizer, page classi-
fier, and code re-factoring components. Details related to this subsystem
will be a topic of subsequence paper.

5. DISCUSSIONS
5.1 Addressing the Issues

The new proposed approach consists of five main (or seven sub.)
components (Fig.1) each of which has its own purpose and function. By
looking closely at these components, we will find that they, collectively,
fulfill table (1) the specific requirements and address the issues presented
in Section 2.

The first component (or features separator) is responsible for
dealing with issue-4. It enables a feature to be separated overcoming
the difficulties introduced by the fact that on the web multiple technolo-
gies have to coexist in one application. The second component (or
preprocessing) mainly responsible for making overall checking of the
features containing scripts and eliminate silent bugs [9]. Together with
the validation component, it can address issue-1, presented in Section
2. This overcomes the challenges due to the immediate interpretations
and the lack of the debugging functionalities of the RTE. The third
component (dynamic processing), which consists of three sub-compo-
nents, serves several purposes. It provides the necessary mechanism for

Table-1. Addressing the issues.

Comp. | Comp. | Comp. | Comp. | Comp. | Comp. | Comp.
1 2 3A 3B 3C 4 5
Issue—1 [©] [©)
Issue—2 [©] O [©]
Issue—3 [©] [¢]
Issue—4 [©)
Issue—5 [©] [©) [©]
Additional [e]

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

controlling program execution, facilitates the execution of the appli-
cations from within the context of the new environment, and also
implies the solution for the difficulties, which arise due to the reflective-
ness and dynamic properties. The fourth component is for validating
features that contain no scripts from different point of views such as
conformance to W3C standards recommendations. Finally, the fifth
component is to enable the approach to deal with a wide range of
applications.

5.2 The Strength of the Approach

The strength of the proposed environment is in the sense that, it
is target-able for assuring several quality attributes of the CSWAPs
rather than only debugging and validating. Although, the primary benefit
to be gained from separating features out of the implementation
artifacts is to facilitate both debugging and validating, the inherit
advantages of the approach enables it to be helpful for assuring several
other quality attributes.

Moreover, the new approach is not tied to any specific language,
platform or RTE. This is the case as the set of components, incorpo-
rating the essential architecture design, can be used as a guideline for the
development of tools to handle CSWAPs applications built with differ-
ent languages and running on different platform. The methodology
requires no modification or extension of the current available RTEs.

6. RELATED WORK

To our knowledge, there is no work in the academic literature on
quality assuring techniques targeting the dynamic behavior of the web.
Exception for that is one paper by the <Bigwig> project team (Claus
Brabrand et al.) [16], which addresses the static validation of dynamic
generated HTML in the context of the <Bigwig> language. While the
aim of their work was at validating HTML components in the context
of specific language, our work aim is at addressing the extra issues, which
are involved in assuring the quality attributes of CSWAPs focusing on
scripts, as they are the main reason behind making the web more
dynamic.

Another paper (tailored to supporting maintenance) by P. Atzeni,
et al. [17], has proposed a model that can support maintenance as well
as the design phase of Web applications. Another paper (tailored to
testing) by H. M. Kienle et al. [18], have introduced a classification of
Web analysis techniques. Another paper (tailored to architecture
recovery) by A.E. Hassan et al. [5], have proposed an approach for
recovering the architecture of Web applications on the windows plat-
form. Jonas Boustedt [6] has made some efforts trying to find suitable
criteria for classifying equivalence pages or nodes for the server
responses in Web services with the help of spider.

These efforts, however, in addition to be tailored to specific tasks,
have considered the client as a pure presentation layer. Our work differs
from such efforts in presenting a new approach for facilitating better
analysis that can overcome many challenges including the complexity
introduced when the client works beyond the presentation layer.

The software engineering literature includes some works on assur-
ing quality, but it is generally aimed for non-web or tradition software
systems rather than for web applications. In the web engineering
literatures including the proceeding of the five international workshops
[1] organized and the two IEEE multimedia special issues, there is no
paper yet investigating assuring quality of CSWAPs.

7. CONCLUSIONS AND FUTURE WORK

In response to the lack of existing approaches specifically designed
for identifying and addressing the specific extra issues involved in
assuring the quality attributes of CSWAPs, we have presented our
approach for that purpose. We focused on identifying the extra issues
involved in assuring the quality attributes of CSWAPs and described the
architecture design of the approach for addressing such issues.

It was found that, several extra and specific issues are involved in
assuring the quality attributes of CSWAPs. These issues include the need
for fulfilling the analysis gap due to the lack of compilation and the type-
less properties of the languages used, the need for overcoming the
challenges of the dynamic property of the applications, the need for

Innovations Through Information Technology 915

program execution controlling mechanisms and the need for reorganiz-
ing and restructuring the base-code to enable a feature to be identified
and separated.

To address such issues, our approach combines static (preprocess-
ing) and dynamic processing together with features engineering tech-
niques. Preprocessing is necessary for filling the analysis gap due to the
immediate interpretation. Dynamic processing serves several purposes.
It provides the necessary mechanisms for controlling program execu-
tion, and deal with the dynamicity and the reflectiveness properties. To
deal with a wide range of applications, the approach involves features
separating techniques.

This work highlights several interesting research issues. Assuring
quality was primarily performed through facilitating debugging and
conformance to standards. Although there are many other quality
attributes to assure (such as understandability, maintainability, and so
on), the inherit advantages of our approach enables the environment to
be target-able for assuring such quality attributes.

ACKNOWLEDGMENT

The authors would like to thanks S. Yamamoto (the associate
professor in Aichi Prefectural University), T. Hamaguchi (the research
associate in the Lab.) and all members of Agusa Lab. for their useful
comments.

REFERENCES

[1] Ginige, A. and Murugesan, S. (2001) “Web engineering: An
introduction”, |IEEE Multimedia, 8(1), pp.15-18.

[2] Costagliola, G., Ferrucci, F. and Francese, R. (2002) “Web
Engineering: Models and methodologies for the design of hypermedia
applications”, in “Software Engineering and Knowledge Engineering
hand book”, vol.2 Emerging Technologies, World Scientific Publishing
Co., pp.181-199.

[3] Isakowwitz, T., Stohr, E. and Balasubramanian, P., (1995)
“RMM: A methodology for structured Hypermedia design. “, Commun.
ACM 38(8), pp.34-44.

[4] Tesoriero, R. and Zelkowitz, M., (1998), “A web-based tool for
data analysis and presentation”, |[EEE Internet Computing, pp.63-69.

[5] Hassan, A. and Holt, R., (2002), “Architecture Recovery of
Web Applications”, in Proc. of ICSE 2002: International Conference
on Software Engineering, Orlando, Florida, pp.19-25.

[6] Boustedt, J., (2002), “Automated analysis of dynamic web
services”, Master thesis in computer science, Uppsala University,
Sweden.

[7] Ricca, F. and Tonella, P., (2001), “Building a tool for the
analysis and testing of Web applications: Problems and solutions”, Proc.
of TACAS 2001, Genova, Italy, LNCS 2031 pp.373-388.

[8] Barry, C. and Lang, M., (2001), “A survey of multimedia and
web development techniques and methodology usage”, |IEEE Multime-
dia, 8(1), pp.82-87.

[9] Aun, M. Sh., Yuen, and Agusa, K., (2002), “A framework for
debugging client-side reflective and dynamic web applications’, proc.
11th International World Wide Web Conf. WWW2002, Hawaii, USA.
http://www2002.0rg/CDROM/alternate/690/index.html.

[10] Nanard, J. and Nanard, M., (1995), “ Hypertext design
environments and the hypertext design process’, Commun. ACM 38(8),
pp.49-56.

[11] Turner, C., Fuggetta, A., Lavazza, L. and Wolf, A., (1999),
“A conceptual basis for feature engineering”, the Journal of Systems and
Software, vol.49, pp.3-15, 1999.

[12] Ousterbout, J., (1998),“Scripting: Higher level programming
for the 21st Century”, |IEEE Computer, pp. 23-30.

[13] Weblint - Html systax checker, http://filewatcher.org/sec/
weblint.html

[14] W3C, “W3C HTML validation services’, available at: http:/
/validator.w3.org.

[15] W3C, “HTML tidy”, available at: http://www.w3.org/People/
Raggett/tidy/

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

916 2004 IRMA International Conference

[16] Brabrand, C., Moller, A. and Schwartzbach, M., (2001),
“Static validation of dynamically generated HTML"’, in proceedings of
workshop on program analysis for software tools and engineering
(PASTE 2001), Snowbird, Utah USA, http://domino.research.ibm.com/
confrnc/paste/paste0l.nsf.

[17] Atzeni, P., Merialdo, P. and Mecca, G., (2001), “Data-
Intensive Web Sites: Design and Maintenance”, World Wide Web, 4, 21-
47, 2001.

[18] Kienle, H. and Hausi, A. (2001), “Leveraging program analysis
for web site reverse Engineering”, 3 Int. Workshop on Web site
Evolution, Folrence, Italy.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/identifying-addressing-extra-issues-
involved/32512

Related Content

An Efficient Clustering in MANETs with Minimum Communication and Reclustering Overhead
Mohd Yaseen Mirand Satyabrata Das (2017). International Journal of Rough Sets and Data Analysis (pp.
101-114).
www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-
overhead/186861

New Media Interactive Design Visualization System Based on Artificial Intelligence Technology
Binbin Zhang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).
www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-
technology/326053

Navigating Complex Systems Design with the PEArL Framework

Donna Champion (2016). International Journal of Information Technologies and Systems Approach (pp. 19-
31).

www.irma-international.org/article/navigating-complex-systems-design-with-the-pearl-framework/144305

Automatic Emotion Recognition Based on Non-Contact Gaits Information

Jingying Wang, Baobin Li, Changye Zhu, Shun Liand Tingshao Zhu (2018). Encyclopedia of Information
Science and Technology, Fourth Edition (pp. 132-143).
www.irma-international.org/chapter/automatic-emotion-recognition-based-on-non-contact-gaits-information/183728

PolyGlot Persistence for Microservices-Based Applications

Harshul Singhal, Arpit Saxena, Nitesh Mittal, Chetna Dabasand Parmeet Kaur (2021). International Journal
of Information Technologies and Systems Approach (pp. 17-32).
www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757

http://www.igi-global.com/proceeding-paper/identifying-addressing-extra-issues-involved/32512
http://www.igi-global.com/proceeding-paper/identifying-addressing-extra-issues-involved/32512
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861
http://www.irma-international.org/article/an-efficient-clustering-in-manets-with-minimum-communication-and-reclustering-overhead/186861
http://www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-technology/326053
http://www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-technology/326053
http://www.irma-international.org/article/navigating-complex-systems-design-with-the-pearl-framework/144305
http://www.irma-international.org/chapter/automatic-emotion-recognition-based-on-non-contact-gaits-information/183728
http://www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757

