
Managing Modern Organizations With Information Technology 457

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Architectural Evaluation Support Tools
Phillip Schmidt, Greg Mulert and Zaven Petrosyan

The Aerospace Corporation M1-113 & M8-080, 2350 E. El Segundo Blvd., El Segundo, CA 90245,

{phillip.p.schmidt, gregory.l.mulert, zaven.petrosyan@aero.org}

ABSTRACT
The Software Architecture Representation Analysis Experimentation
Environment (SARAEE) is an applied research project that investigates
architectural representation issues that arose from our Real-time Em-
bedded Architecture-Centric Testbed (REACT) experience. This report
documents three architectural evaluation support tools that were
developed by SARAEE to support on-going architectural analysis
conducted by REACT. The tools include a requirement visualization
tool that assists in the visualization of requirement dependencies, a tool
to support REACT’s aspect-oriented architectural assessment ap-
proach, and an early prototype tool that assists in investigating the
potential impact of unanticipated concerns. This report presents the
motivation for developing the tools to support REACT and their
features. Finally, we discuss future directions in our tool development
efforts.

INTRODUCTION
REACT is a facility used to conduct architectural assessments of real-
time embedded systems to discover and resolve architectural problems
early in the development cycle. [Sch2002b] REACT is one of the first
projects to successfully develop and apply architecture-centric, aspect-
oriented assessment techniques to Unified Model Language (UML) based
model representations of large embedded space applications [Sch2002a],
[Sch2003a], [Sch2003c], [Sch2004a]. REACT receives periodic archi-
tectural information from contractors supporting various space pro-
grams. Because many of the large space programs are developing their
architectural information using UML, REACT develops techniques to
extract the architectural information from UML, and represent it using
extensible markup language (XML) to support static and dynamic
assessments. The architectural information REACT receives consists of
a number of artifacts including requirement information (e.g. require-
ment specifications mapped into behavioral use cases that describe
courses of action (COAs) for the system to support), interface control
documents (ICDs), and architectural models (e.g. UML), test proce-
dures, and code. The formats of the architectural information vary. It
is not uncommon to receive UML descriptions, spreadsheets, presenta-
tion files, text files, and other proprietary data formats. REACT’s
collection of tools parses these artifacts into analyzable representa-
tions. These representations are typically XML files. Over time,
REACT began to accrue a collection of XML schemas to capture
architectural information and requirement information that is not
represented natively as UML. SARAEE was formed to study REACT’s
various representation schemas and develop a meta-schema strategy
that would organize not only requirements and UML-architectural
information, but also information related to testing and simulation
analysis, and REACT findings.

Our experience with REACT revealed that frequently there are problem
areas among the relationships of the various architectural artifacts.
Figure 1 illustrates the typical relationships among the various program
artifacts and identifies some potential problem areas. These problems
may result in an implementation that does not meet requirements and
testing that may be incomplete.

REACT’s experience suggests that many of these shortfalls continue to
persist because of the evolving nature of complex real-time embedded
development [Sch2003a], [Sch2003b]. Supporting timely architectural

assessment in this environment requires automated support tools to
prepare the information for analysis and assist in its evaluation.
REACT’s core-technologies support aspect-oriented architectural as-
sessment [Sch2002a]. How these REACT-developed techniques can be
applied to support architectural assessment and representation of
evolving architectures is described in [Sch2004b].

This report discusses three auxiliary support tools that were designed and
developed by SARAEE and which have been applied by the REACT
facility to support architectural analysis of several large space satellite
systems. The tools include a requirement visualization tool that assists
in the visualization of requirement dependencies, a tool to support
REACT’s aspect-oriented architectural assessment approach, and an
early prototype tool that assists in investigating the potential impact
of unanticipated concerns. In section 4, we describe our future plans.

REQUIREMENT VISUALIZATION
Contractor-provided use cases are typically divided into a large number
of individual files often developed by several developers in parallel.
Ensuring that the use cases capture a functionally complete and consis-
tent view of all requirements is increasingly difficult as space-based
requirements become more complex. Use cases are frequently grouped
into related functional behavior called courses of action (COAs). The
COAs are comprised of steps which are illustrated in Figure 2.

Different COA steps may invoke other COAs to support alternative
COAs or exception conditions. COAs therefore can be functionally
related or dependent on other COAs. This organization facilitates
modularizing requirement dependencies. For example, invoking a
common error logging “utility” course of action similar to a subroutine
usage may satisfy functional requirements that need to perform an error
logging service as part of alternative processing.

To support REACT’s use case analysis, REACT developed tools to parse
the use cases (typically provided as text documents) into a collection
of XML files. When parsing use cases, it is possible to use other meta-
information to filter requirements of interest. For example, require-

Figure 1. Relationships Among Architectural Artifacts

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5225

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

458 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ments could be pre-filtered based on the subsystem to which they are
allocated, the build spiral in which they are implemented, or the test
method. The generated XML files capture information that identify the
flow of COA steps, the pre and post conditions, trigger, and specified
requirement actions. The schemas for these files formed the basis of
SARAEE’s requirement representation schema. The requirement visu-
alization tool, called ReqVis, was developed to support use case analysis
of the generated XML files. This process is illustrated in Figure 3.

ReqVis is a tool for constructing a visual representation of use case
requirements and their relationships as a graph of nodes and edges. It is
not uncommon for an advanced satellite or ground system to contain
several thousand individual steps to be carried out under various condi-
tions making manual analysis extremely limited. The total number of
steps (nodes) is one measure of a system’s complexity, but it does not
provide a complete picture. The number of links (edges) between courses
of action steps represents the requirement interdependencies of the
system, and a large number of interdependencies can affect our ability
to understand the repercussions on development schedules and test plan
relationships. Consider the example of the error logging mechanism
mentioned previously: all courses of action that make calls to the error
logger cannot be tested fully until the error logger itself has been written
and tested. Such dependencies need to be identified early to ensure that
they do not impact development schedules and lead to costly delays.
ReqVis allows the user to identify use case dependencies visually by
building a graph representing the courses of action, their steps, and the
calls that link them together. Figure 4 illustrates complex use case
dependencies for an actual satellite system. Individual courses of action
are displayed as vertical stacks of boxes linked by short arrows, each box
representing one step and indicating the flow of control between steps

within a course of action. The longer arrows indicate calls from one step
to another. The orientation of the arrow indicates which step is making
the call. It is easy to observe courses of action that are either the source
or target of many calls. In this example, one such course of action sits
at the extreme left of the third row. The lines radiating out from it
indicate that it either calls or is called by dozens other courses of action.
Another item of interest in this screenshot is the ragged strip of boxes
along the right edge of the graph. These lines represent nonexistent
courses of action that are nonetheless the target of one or more calls.
These represent errors in the use case documents which may be caused
by are missing use case alternatives, improperly specified requirement
semantics, or subtle typos that create dangling links that have not been
corrected. Detecting such discrepancies manually would be quite time
consuming .

We have used this capability of selecting subsets of requirements to
identify early a collection of subtle requirement allocation problems
that could have affected a planned subsystem test. In one example, the
contractor had scheduled individual subsystem tests. REACT pre-
filtered requirements based on the requirement allocations provided by
the contractor for the subsystem under test. These pre-filtered require-
ments were then analyzed using ReqVis to identify the “dangling”
requirement references. Upon inspection, REACT found that some
requirement references were missing, while others were valid but
unallocated to the subsystem. In addition, REACT discovered that the
subsystem under test depended upon the successful functional capability
of another subsystem that was not scheduled for testing until much later.
The discovery of unallocated requirements and subsystem dependencies
enabled the contractor to revise their requirements, allocation, test plan
strategy, test procedures, and schedule to correct these problems early.

These kinds of results have proven the usefulness of ReqVis, even at this
early stage of development. Features that still remain to be added include
filters for dynamically displaying only a particular subset of the courses
of action and cycle-testing capability. The latter is particularly helpful,
as it will be able to locate relationships of the form “A calls B, which
calls C, which calls A” that could lead to processing dependency loops
that make testing problematic. In the future, additional information
(such as triggers, pre-conditions, and post-conditions) will be attached
to each of the use cases, allowing them to be easily displayed and
analyzed. When combined with the subset capability mentioned previ-
ously, the ability to locate and alter specific portions of the use case set
could prove extremely powerful.

Figure 2. Course of Action Organization

Figure 3. Use Case Analysis Process

Figure 4. Use Case Dependencies

Managing Modern Organizations With Information Technology 459

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ASPECT PROCESSING
REACT’s aspect-oriented approach to architectural assessment and
how REACT results have supported UML analysis are discussed in
[Sch2003a], [Sch2003c], [Sch2004a]. In this section, we describe how
an Aspect Processor tool, shown in Figure 9, was created to effectively
manage the growing volume of contractor data and efficiently perform
UML-based architectural assessments. Although REACT developed
several aspect-oriented assessments to investigate architectural consis-
tency and completeness concerns, the processing needed to perform the
assessments requires a complicated manual intervention of several
application tools. To support early discovery of potential problems,
REACT began to acquire large collections of contractor data. With the
proliferation of REACT tools and the frequency of data deliveries from
contractors, the amount of data manipulation that had to be performed
by hand became a bit overwhelming. The Aspect Processor provides a
simplified, wizard-style interface to streamline the extraction and
aspect analysis portion of the tool chain. After selecting the current
program and known UML models of contractor data to analyze, the user
is presented with a selection of aspects that can be applied over the
contractor’s pre-processed UML model. The aspect screen is shown in
Figure 5.

The Aspects screen lists the currently available aspects and allows us to
select the ones that we wish to run against the selected models. One useful
additional feature The “Select Common” button selects a subset of the
aspects that have been previously designated as the most applicable to
the selected subsystem. This is convenient when running the same set
of aspects against multiple models for a given project to collect trending
information. The common aspects are numbered to facilitate selection.
Having selected the aspects we’re interested in, we specify the UML files
(in an XMI format) to process and specify the directory for the output
files. The XMI input files will always be copied into a hierarchical
directory structure broken down along the same lines as the wizard:
project first, followed by subsystem and then date. In certain cases
(specifically, when we run either every available aspect or just the
“common” aspects for the subsystem), a copy of the output will also be
stored alongside the source files that were used to generate them. This
caching mechanism allows us to simply return the generated output file
immediately if the same parameters are passed to the wizard in the future.
The directory selection is performed via a standard file browser window.
Once the directories have been selected, we can proceed to the final
summary of choices shown in Figure 6.

When the “Finish” button is clicked, the XMI input files will be copied
to the appropriate location in the file system hierarchy (with the
necessary directories being created, as required), the Extractor tool will
be run on each model to convert it to REACT’s internal representation

format, and the Aspect Processor tool will run the selected aspects
against the selected models. The output will then be placed in the selected
output directory, along with a cached copy in the hierarchal directory
structure if the conditions outlined previously were met.

The Aspect Processor tool eliminates the problem of shuffling contrac-
tor and intermediate data from directory to directory, avoids an error
prone process of manually entering the necessary parameters for each
individual run of the Extractor, dynamically creates the appropriate
XML input that defines the selected aspects, executes the aspect
evaluation, and copies the final output to a convenient location. Aspect
processing reduces to an easy series of wizard windows, followed by a final
processing step as the instructions are carried out. In addition, it enforces
good file organization by storing the source and intermediate files in
standardized locations, as well as caching useful results for later use.
Through use of the Aspect Processor tool, the total time required to
convert contractor data from XMI files to useful results have been
reduced from hours to minutes.

In the future, the REACT’s generation of assessment products will be
expanded to include other REACT tools such as automating the conver-
sion of UML models to XMI through integration with commercial UML
tools, and automating the processing of the various Perl scripts that are
used to perform use case analysis. Because the wizard is implemented
using the Java programming language, it can easily be integrated into
other tool frameworks such as Eclipse. For pre-processed REACT
assessment products, we are planning to develop browser-based inter-
faces to disseminate REACT findings to members of program offices via
the Web. This would be a significant step in improving the availability
of assessment products and in lowering the threshold for end users to
generate and obtain REACT reports directly, without having to request
the help of REACT team members.

IMPACT ASSESSMENT SUPPORT
During the design and development of complex space satellite systems,
system engineering may require unforeseen changes. Significant changes
often arise in the form of an engineering change proposal (ECP), and
the sponsoring program office frequently requests what the impact of
the change would be on the evolving architectural artifacts of the
system. Figure 7 illustrates how the impact of a single concern can cut
across many architectural artifacts.

In practice, a typical change will create one or more concerns that cut-
across many representation/information artifacts, often in a highly
project-specific manner. As a system evolves, not all concerns of
interest are known a priori, and therefore it is unreasonable to expect
that all aspects will be explicitly managed with explicit representations

Figure 5. Aspect Processor Aspects Screen

Figure 6. Aspect Processor Confirmation Screen

460 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

within the architectural artifacts. REACT found that UML represen-
tations were often a combination of different levels of abstraction
making it difficult to discern abstract conceptual model usage from
implementation-oriented model usage [Sch2003a], [Sch2003c]. Addi-
tionally other architectural problems with inconsistencies, behavioral
incompleteness, and weak traceability from requirements, through
design and code, tended to make impact assessment of requirement and
design changes difficult. Given these architectural handicaps, SARAEE
studied how REACT’s aspect-oriented assessment techniques could be
applied to assess the impact of changes to an evolving architecture
[Sch2004b]. The Impact Assessment tool is a proof of concept tool that
demonstrates the feasibility of applying REACT’s aspect-oriented
assessment techniques to an evolving architectural description. The
approach taken was as follows:

1. A concern of interest would be identified.
2. From that concern, a means to specify an architectural “handle”

that characterizes that concern would be identified. Identifying an
architectural handle usually requires recognition of program-
specific UML usages for a given architectural description. For
complex concerns, many “handles” might be necessary to achieve
a full characterization. In particular, architectural augmentation
aspects may be needed to clarify this characterization as the
architectural representations evolve.

3. Finally an aspect would be written to exploit the architectural
handle(s) to identify points of interest related to the concern, and
if necessary take appropriate action.

The Impact Assessment tool was used in the following example to
demonstrate this approach in a straightforward manner.

1. The concern of interest was: Identify commercial tool dependen-
cies. In our embedded example, this concern meant identifying
places within the architecture where a commercial operating
system (e.g., VxWorks) was being used.

2. In this example, the contractor had pre-fixed method invocations
with a Vx substring. Finding all methods of all classes with this
prefix would identify places of VxWorks dependencies. The Impact
Assessment tool provided a means to specify an arbitrary text
string to search over all architectural methods.

3. Although it is possible to develop augmentation aspects that could
annotate or tag points of interest based upon any collection of
architectural handles, the proof of concept example did not require
this. In this example, the aspect to search over all architectural
methods only required the identification of methods. Figure 15
illustrates the XML data set generated by the Impact Assessment
tool for the VxWorks query.

Prior to the Impact Assessment tool, REACT used fixed, pre-defined
aspects to search and collect specific architectural information. The

Impact Assessment tool provided a rudimentary capability to specify a
variable string argument to specialize an architectural search. The
REACT team applied this concept to an actual engineering change. The
change arose because the specifications for an external device with
which the contractor was to interface had changed. The program office
was interested in all use case requirements, design artifacts, and code that
could be affected by the change. Using the Impact Assessment tool,
string identifiers characterized the concern. With this characterization,
REACT not only discovered all the requirements and design artifacts of
interest, but also found requirement allocation and traceability problems
that prevented a direct identification to the implemented code.

By reverse engineering implemented code into UML, REACT was able
to identify several areas, impacted by the engineering change, where the
reverse engineered design did not match the design specification. These
discoveries proved useful, not only in clarifying the requirement
dependencies on the external device, but also in correcting design
disconnects within the implementation.

Currently the impact assessment tool takes an identified string and finds
the points of interest. We plan to extend the impact assessment tool
by providing the user the capability to create aspects that can not only
find requested points of interest but also take some functional action to
augment the representation. This capability can be quite powerful to
configure the model generator to support dynamic assessment. Future
work on the impact assessment tool requires developing the architec-
tural schemas to support more sophisticated augmentation of meta-
information.

CONCLUSIONS AND FUTURE WORK
The architectural evaluation support tools developed under SARAEE
have been successfully applied by REACT to identify and resolve real
architectural issues of embedded space satellite systems. Currently
SARAEE is developing various schema representations to broaden the

Figure 7. Cross-Cutting Concern

Figure 8. Impact Assessment Results

Managing Modern Organizations With Information Technology 461

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

scope of impact assessment. Figure 9 illustrates SARAEE’s schema areas
under development and the underlying tools to support their analysis.

We are currently investigating ways to improve the usability of these
tools. One promising approach is to integrate REACT’s various
assessment capabilities into an Eclipse-based environment [Ecl2004] as
a collection of plugins. We also plan to migrate REACT’s architectural
representation schemas into the UML 2.0 meta-model and develop both
domain-independent and domain-dependent profiles to support more
sophisticated dynamic assessments. One benefit from the Eclipse plugin
approach has been the ability to support aspect composition. Our on-
going efforts continue to evolve the tools to meet the changing demands
of various program offices.

Figure 9. Aspect-Oriented Architectural Assessment

REFERENCES
[Ecl2004] http://www.eclipse.org
[Sch2002a] Schmidt, P., Duvall, R., Lankford, J., Mulert, G., “Evalua-

tion of Aspects in UML Models,” Proceedings of the 2002 Ground
Systems Architectures Workshop, March 13-15, 2002, El Segundo,
CA.

[Sch2002b] Schmidt, P., Milstein, J., Duvall, R., Lankford, J., Rivera,
J., “Lessons Learned Using REACT: An Architectural Testbed for
Real-time Embedded Systems, in Proceedings of the 2002 Informa-
tion Resources Management Association International Confer-
ence, Seattle, WA, May 19-22, 2002.

[Sch2003a] Schmidt, P., P., Alvarado, S., Milstein, J., Mulert, G., Duvall,
R., Rivera, J., “A Systems Engineering Perspective of Aspect-
oriented Software Architectural Analysis using UML,” in 2003
Aspect-Oriented Software Development Workshop on UML, Bos-
ton, MA, March 18, 2003.

[Sch2003b] Schmidt, P, Alvarado, S., Rivera, J., Milstein, J., “Architec-
tural-Centric Representation for Design Diversity and Program
Evolution,” in 2003 Proceedings of the Ground Systems Architec-
tures Workshop, March 4-6, 2003, The Aerospace Corporation, El
Segundo, CA 90245. See http://sunset.usc.edu/gsaw

 [Sch2003c] Schmidt, P., Duvall, R., Mulert, G., Milstein, J., Rivera, J.,
“Aspect-Oriented Architectural Analysis using Multi-level Model-
ing of Complex Systems, in Proceedings of 2003 International
Resource Management Conference , Philadelphia, PA, May 2003.

 [Sch2004a] Schmidt, P. Milstein, J., Alvarado, S., “An Analysis of
Aerospace Software Architectures Using Aspect-Oriented Pro-
gramming Principles,” Aerospace Technical Report ATR-
2004(8343)-01, 28 May 2004.

[Sch2004b] Schmidt, P. Milstein, “Representing and Evaluating Soft-
ware-Intensive Architectures that Evolve,” Aerospace Technical
Report ATR-2004(8343)-03, 31 Aug 2004.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/architectural-evaluation-support-

tools/32636

Related Content

A Novel Aspect Based Framework for Tourism Sector with Improvised Aspect and Opinion

Mining Algorithm
Vishal Bhatnagar, Mahima Goyaland Mohammad Anayat Hussain (2018). International Journal of Rough

Sets and Data Analysis (pp. 119-130).

www.irma-international.org/article/a-novel-aspect-based-framework-for-tourism-sector-with-improvised-aspect-and-

opinion-mining-algorithm/197383

Introduction
Andrew Basden (2008). Philosophical Frameworks for Understanding Information Systems (pp. 1-30).

www.irma-international.org/chapter/introduction/28079

Federal Government Application of the Cloud Computing Application Integration Model
John P. Sahlin (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2735-

2744).

www.irma-international.org/chapter/federal-government-application-of-the-cloud-computing-application-integration-

model/112692

A Constrained Static Scheduling Strategy in Edge Computing for Industrial Cloud Systems
Yuliang Ma, Yinghua Han, Jinkuan Wangand Qiang Zhao (2021). International Journal of Information

Technologies and Systems Approach (pp. 33-61).

www.irma-international.org/article/a-constrained-static-scheduling-strategy-in-edge-computing-for-industrial-cloud-

systems/272758

Citation Analysis and Theory
James Tsung Juang Wang (2015). Encyclopedia of Information Science and Technology, Third Edition (pp.

4507-4515).

www.irma-international.org/chapter/citation-analysis-and-theory/112893

http://www.igi-global.com/proceeding-paper/architectural-evaluation-support-tools/32636
http://www.igi-global.com/proceeding-paper/architectural-evaluation-support-tools/32636
http://www.irma-international.org/article/a-novel-aspect-based-framework-for-tourism-sector-with-improvised-aspect-and-opinion-mining-algorithm/197383
http://www.irma-international.org/article/a-novel-aspect-based-framework-for-tourism-sector-with-improvised-aspect-and-opinion-mining-algorithm/197383
http://www.irma-international.org/chapter/introduction/28079
http://www.irma-international.org/chapter/federal-government-application-of-the-cloud-computing-application-integration-model/112692
http://www.irma-international.org/chapter/federal-government-application-of-the-cloud-computing-application-integration-model/112692
http://www.irma-international.org/article/a-constrained-static-scheduling-strategy-in-edge-computing-for-industrial-cloud-systems/272758
http://www.irma-international.org/article/a-constrained-static-scheduling-strategy-in-edge-computing-for-industrial-cloud-systems/272758
http://www.irma-international.org/chapter/citation-analysis-and-theory/112893

