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ABSTRACT

The Model Driven Architecture (MDA) is facing a paradigm shift from
object-oriented software development to model-centric development.
MDA distinguishes at least three different kinds of models: Platform
Independent Model (PIM), Platform Specific Model (PSM) and Imple-
mentation Specific Model (ISM). With the MDA approach, some crucial
points are the refactoring techniques that allow model transformations
leaving their behavior unchanged but enhancing some non-functionality
quality factors. In this paper we propose a uniform treatment of
refactorings at levels of PIMs, PSMs, and |SMs. We define refactorings
as metamodel-based transformation contracts that can be used to
validate and test transformations.

1 INTRODUCTION

The Model Driven Architecture (MDA) is an initiative proposed by the
Object Management Group (OMG) to model-centric software develop-
ment (MDA, 2003). MDA promotes the creation of abstract models that
are developed independently of particular platforms and then automati-
cally transformed by tools into models or code for specific platforms or
technologies. It distinguishes at least three different kinds of models:
Platform Independent Model (PIM), Platform Specific Model (PSM)
and Implementation Specific Model (ISM). A PIM is a model that
contains no reference to the platforms that are used to realize it. A PSM
describes a system in the terms of the final implementation platform
e.g., .NET or J2EE. An ISM refers to components and applications.

A Model Driven Development (MDD) is carried out as a sequence of
model transformations. We can distinguish two types of transforma-
tions to support model evolution from PIMs to ISMs: refinements and
refactorings. A refinement is the process of building a more detailed
specification that conforms to another that is more abstract. On the
other hand, a refactoring means changing a model leaving its behavior
unchanged, but enhancing some non-functionality quality factors such
as simplicity, flexibility, understandability and performance.

Refactoring is a crucial point in model evolution. Although the most
effective forms of refactorings are at the design levels (e.g, PIMs or
PSMs), MDA-based Case tools provide limited facilities for refactoring
only on source code through an explicit selection made by the designer
(CASE UML, 2005). In this light, we propose a metamodeling technique
to define refactorings at different abstraction levels in a uniform way.
A transformational system based on behavior-preserving model-to-
model transformations was defined. To reason about correctness and
robustness we propose to specify refactorings as OCL contracts that are
based on metamodels capturing common properties to a family of
refactorings.

This paper is structured as follows. Section 2 provides some background
on refactoring in the MDD context. Section 3 exemplifies rules to
restructure models at levels of PIMs, PSMs and | SMs. Section 4 discusses
how to specify model-to-model transformations as OCL contracts.

Section 5 considers related work. Finally, in Section 6 conclusions and
future work are given.

2 REFACTORING AND MDD

Key to MDA is the importance of models in the software development
process. MDA defines a framework that separates the specification of
the system functionality from its implementation on a specific plat-
form. MDA distinguishes different kinds of models:

. Platform Independent Model (PIM), a model with a high level
of abstraction that is independent of any implementation
technology.

. Platform Specific Model (PSM), a tailored model to specify the

system in terms of the implementation constructs available in
one specific implementation technology.

. Implementation Specific Model (ISM), a description (specifica-
tion) of the system in source code.

A model driven development is carried out as a sequence of model
transformations that includes at least the following steps: construct a
PIM that provides a computing architecture independent of specific
platforms; transform the PIM into one or more PSMs, and derive code
directly from the PSMs (MDA, 2003; Kleppe et al., 2003).

One of the main key issues behind the Model-Driven Development is
that all artifacts generated during software development are represented
using metamodeling languages. In MDA, they are expressed as a
combination of UML class diagrams and OCL constraints (UML, 2005;
OCL, 2005). The 4 main core metamodeling constructs are classes,
binary associations, data types and package.

The transformations between models are described relating each ele-
ment of the source model to one or more elements of the target model
at metamodel level. In other words, relating the metaclass of the element
of the source model with the metaclasses of the element of the source
model. The models to be transformed and the resulting models of the
transformations will be instances of the corresponding metamodel. Fig.
1 shows the relations between PIMs, PSMs and I1SMs. The following
types of transformations can be distinguished:

. Refactoring. It is applied to a model in a given level generating
a new restructured model in the same level (PIM to PIM, PSM
to PSM, ISM to ISM).

. PIM to PSM Refinement. It describes how a PIM that is an
instance of a UML-Metamodel is transformed into a PSM that
is an instance of a specialized metamodel for a specific platform.

. PSM to ISM Refinement. It describes how a PSM is transformed
into code (which is an instance of UML Metamodel for a
platform and specific language technologies).
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Figure 1. Refactoring in MDD
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3 MDA-BASED REFACTORINGS

Refactoring is a powerful technique when it is repeatedly applied to a
model to obtain another one with the same behavior. A transformational
system for refactoring UML static models is proposed. The goal is to
provide support for small refactorings by applying semantics-preserv-
ing transformation rules. Transitions among versions are made accord-
ing to precise rules based on the redistribution of classes, variables,
operations and associations across the diagram in order to facilitate
future adaptations and extensions.

We define a library of refactorings that classifies them at PIM, PSM and
ISM levels. Section 3.1 informally describes the system of transforma-
tion rules for refactoring models at different abstraction levels.

3. 1 Transformation Rules

This section shows examples of transformation rules applied at different
levels, PIMs (3.1.1), PSMs (3.1.2.) and ISMs (3.1.3.). We use textual
and diagrammatic descriptions to describe each example of refactoring.

3. 1.1 Examples of PIM Refactorings

Adding a transitive association: Given an association between classes A
and B and an association between classes B and C, an association may be
derived between A and C, determining the appropriate association type,
the multiplicities and the navigability of each association end. (Whittle,
2002)

Substitution of an association: Given an association a, it may be
substituted with a less constrained association of the same name, i.e., in
any association a, an association-end E with multiplicity multl may be
substituted with an association-end E with multiplicity mult2, where
multl ¢ mult2. (Evans, 1998)

Joint of unidirectional associations: Two unidirectional associations
with navigability in opposite direction may be joined in a plain
bidirectional one (Kollmann & Gogolla, 2001).

Adding an association class: Given a class that associates with other two

classes, with association ends with the other classes with multiplicity
equal to 1, it may be transformed to an association class.
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3. 1. 2 Examples of PSM Refactorings
Folding: It joins two classes which have a direct inheritance relationship
obtaining a new class gathering the behavior of both. The goal isto reduce
the level of a class hierarchy in those cases where there is no particular
interest in the behavior of a base class.

Abstraction: It divides the behavior of a class generating two classes
which maintain a direct inheritance relationship. By the application of
this rule, a new base class can abstract the more general behavior
identified inside another class.

Union: It gathers two classes without inheritance relationship to each
other in anew one. Thisrule can be useful to group behavior and to reduce
the multiple inheritances.

Extract Composite: It extract a superclass that implements the Compos-
ite, when subclasses in a hierarchy implement the same Composite.
(Kerievsky, 2004)

3. 1. 3 Examples of Code Refactorings

Replace Temp with Query: Given a temporary variable in a method body
that hold in the result of an expression, it may be replaced with a query
method. The expression is extracted into a method. All references to
the expression are replaced. The new method can then be used in other
methods. (Fowler, 1999)

Example 3. 1. 2
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Example 3. 1. 3

double basePrice=quantity*itemPrice;
if (basePrice > 1000)
return basePrice * 0.95;

thod()

else
return basePrice * 0.98;

double basePrice() { @
return quantity*itemPrice; } \\

~
AN

if (basePrice() > 1000) AN
return basePrice() * 0.95; N, .
else basePrice()
retumn ) * 0.98; thod()
if (isSpecialDeal())
{ total=price* 0.95;
send();
else 0:} method()

{ total=price* 0.98;

send(); } @

if (isSpecialDeal())
total=price* 0.95;

Ise
total=price* 0.98;
send();

method()

Header File Imp File

File :>

Consolidate Duplicate Conditional Fragments: When a same fragment
of code is in all branches of a conditional expression, the fragment of
code may be moved outside the expression. This makes clearer what
varies and what stays the same. (Fowler, 1999)

Modularization: Given a file containing interface descriptions and
implementations, the rule generates a header file with the interface
descriptions and an implementation file.

4 METAMODELING APPROACH FOR REFACTORINGS
A metamodeling approach to define transformation rules at different
abstraction level is proposed. Metamodel transformations impose
relations between a source metamodel and a target metamodel both
represented as UML class diagrams annotated in OCL. The source
metamodel defines the family of source models to which refactorings can
be applied and the target metamodel characterizes the models that are
generated by conforming an OCL contract.

Refactorings are described by transformation rules that consist of a
name, a set of parameters, a precondition and a postcondition. Each
parameter is a metamodel element. The precondition, which deals with
the state of the model before the transformation, states relations at the
metamodel level between the elements of the source model. The
postcondition, which deals with the state of the model after the
transformation, states relations at metamodel level between the ele-
ments of the source model and a target model. Rules can also include local
operations that are used in preconditions and postconditions. The
application of these rules can generate new elements on the model,
modify or remove existing ones.

The restructuring rules are basic units of transformation, i.e., starting
from them, particular sequences can be built to solve situations presented
in a model which is wanted to improve. These predefined sequences are
denominated restructuring strategies and they were exemplified in
(Pereira et al., 2004).

Next, we define the Extract Composite refactoring (see 3.1.2.) by using
a C++ platform. In Fig. 2 we show a simplified C++ metamodel. The
Extract Composite rule allows extracting a superclass that implements
the Composite. Below, we partially show the Extract Composite trans-
formation as an OCL contract. The Extract Composite refactoring
consists of the following steps: create a Composite; make each child
container (a class in the hierarchy that contains duplicate methods) a
subclass of the Composite and move duplicated methods across the child

Figure 2. A simplified C++ metamodel
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containers to the Composite (Kerievsky, 2004). Comments explaining
postconditions are attached following (see Box A).

5 RELATED WORK

The first relevant publication on refactoring was carried out by Opdyke
(1992), showing how functionalities and attributes can migrate among
classes, how classes can be joined and separated using a class diagram
notation (subset of current UML). Roberts (1999) completed this work
describing techniques based on refactoring contracts.

Fowler (1999) informally analyzes refactoring techniques on Java
source code, explaining the structural changes through examples with
class diagrams. Fanta & Rajlich (1998) and Fanta & Rajlich (1999) study
refactoring of C++ code.

Several approaches provide support to restructure UML models. In
(Gogolla & Ritchers, 1998) advanced UML class diagram features are
transformed into more basic constructions with OCL constraints. Evans
(1998) proposes a rigorous analysis technique for UML class diagrams
based on deductive transformations. In (Sunyé et al., 2001) a set of
refactorings is presented and how they may be designed to preserve the
behavior of UML models is explained. Philipps & Rumpe (2001)
reconsider existing refinement approaches to formally deal with the
notions of behavior, behavior equivalence and behavior preservation.
Whittle (2002) investigates the role of transformations in UML class
diagrams with OCL constraints. Mens et al. (2003) provide an overview
of existing research in the field of refactoring. Porres (2003) defines and
implements model refactorings as rule-based transformations. Van Gorp
et al. (2003) propose a set of minimal extensions to UML metamodel,
which allows reasoning about refactoring for all common object-
oriented languages. Thomas (2005) analyses the state of the art in
refactoring and issues such as languages and tool impact on refactoring,
refactoring as meta-programming, refactoring and persistent instances.

Tools are available to automate several refactoring aspects. For ex-
ample, Guru (Moore, 1995) is a fully automated tool to restructure
inheritance hierarchies of SELF objects preserving behavior. Smalltalk
Refactoring Browser (Roberts et al., 1997) is an advanced browser for
VisualWork which automatically carries out transformations which
preserve behavior. There is a tendency to integrate refactoring tools
into industrial software development environments. For example,
Together ControlCenter (TogetherSoft, 2005) applies code refactoring
on user requirements and IntelliJ IDEA (IntelliJ IDEA, 2005) comes
fully equipped with refactoring tools.
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Box A.

Transformation Extract Composite {
parameters
source: C++ Metamodel:: Project
target: C++ Metamodel:: Project
parentClass: C++ Metamodel:: Class
subclasses: Set (C++ Metamodel:: Class)
local operations
isConsistentWith (f1: Function, f2: Function): Boolean
-- return true if fl is consistent with f2:
isConsistentWith (f1,f2) =
-- f1 and f2 reference equivalent attributes,
flreferencedAttributes >size() = f2referencedAttributes >size() and
flreferencedAttributes>forAll (al / f2.referencedAttributes>
exists(a2  /equivalentAttributes(al,a2)))
-- f1 and f2 have the same number of parameter,
f1.parameter - size() =f2.parameter - size() and

Sequence {1..(f1.parameter->size())} >
forAll (index: Integer/ conformTo(f1.parameter->at(index).type f2.parameter->at(index).type)) and
-- thereturn type of f1 conforms to the return type of f2 and
conformTo(fl.returnType, f2.returnType)
isConsistentinAllSubclasses (f: Function): Boolean
isConsistentinAllSubclasses (f) =
subclasses > forAll(s/ s.member.oclis TypeOf(Function) > exists(fun/
isConsistentWith(f, fun) or isConsistentWith(fun,f) ))
conformTo (c1: Classifier, c2: Classifier): Boolean
-- return true if the classifier c1(that defines a type) conforms c2.
conformTo (c1,c2) =(c1=c2) or (cl.allParents() - includes(c2))
preconditions
--subclasses and parentClass are element of source model.
source.ownedBe ment.oclisTypeOf(Class) > includes (parentClass) and
source.ownedEle ment.oclisTypeOf(Class) = includesAll (subclasses) and

--subclasses collection contains subclasses of parentClass.
subclasses - forAll( ¢/ c.generalization.parent - includes (parentClass)) and

-- each class of subclasses has abinary association with parentClass whose association
-- end tie to the subclass is an aggregation
>forAllc/c iation.association - exists (a / a.connection > size() =2 and
a.connection->exists (e/e.participant=c and e.aggregation=#aggregation)) ) and

-- al subclasses have functions thatcan be factorized.
subclasses - forAll (¢/ c.member.oclisKindOf (Function) - exists (f/
isConsistentinAllSubclasses(f) )) and

--subclasses calecton has at least two classes.
subclasses > size() >=2 and
postconditions
--in the target model exists aclass, C, so that
target.ownedElement.oclisTypeOf (Class) - exists (¢ /

--class Cis created during Extract Composite transformation.
c.oclisNew() and

-- C has a parentclass with:
c.generalization.parent.oclisTypeOf(Class) > exists(class/
-- the same name of parentClass,
class.name=parentClass.name and
-- the same generalization class calection of parentClass,
class.generalization.parent.oclis TypeOf(Class) =
parentClass.generalization.parent.oclisTypeOf(Class) and
-- the same members of parentClass,
class.member=parentClass.member and
-- and the specialization class collection contains class C and those subclasses of
-- parentClass that not belong to subclasses collection.
class.specialization.child.oclis TypeOf (Class) = includes(c) and
class.specialization.child.oclis TypeOf (Class) >
includesAll(parentClass.specialization.child.oclis TypeOf(Class) ->subclasses)) and

-- C has factorized functions from subclasses.
c.member.oclisKindOf (Function) - forAll(f/ subclasses - forAll (sub /
sub.member.oclisKindOf (Function) > exists ( fsub/ isConsstentWith(fsub, f)))) and

-- C has factorized association end from subclasses.
c.association - forAll( a/ subclasses = forAll (sub /
sub.association > exists ( asub/ equivalentAssociationEnd(asub, a)))) and

-- C has factorized attributes from subclasses.
-- for each subclass of C, subc, there is asubclass of subclasses, sub, so that
c.specialization.child.oclis TypeOf(Class) - forAll (subc/
subclasses> exists (sub/
--subc and sub have the same name,
subc.name=sub.name and

-- the same child classes,
subc specialization.child.oclis TypeCOf (Class) = sub.specialization.child.oclis TypeOf (Class) and

-- subc excludes functions equivalent with those that were factorized to class C,
sub.member.oclisKindOf(Function) - forAll( f/
c.member.oclisKindOf (Function) - forAll ( fc/
if (isConsistentWith (f, fc) then
subc.member.oclisKindOf (Function) - excludes (f) and
--invocations of f mustbe consistent with factorized function interface

isKindOf (Function) > includes ()

else subc.|
endif)
-- subc excludes associations equivalent to factorized associations,
sub.association > forAll(as/
c.association - forAll (fas/ f (equivalentAssociation(a,fas)
then subc.association - excludes (as) and
--invocatons of as mustbe consistent with factorized associaion end.
else subc.association - includes (as)
endif)

-- subc excludes attributes equivalent with those that were factorized to class C

-- the type of each formal parameter of f1 conforms to the type of the corresponding elements of 2,
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Kerievsky (2004) presents a method for pattern-directed refactorings.
Long, Jifeng and Liu (2005) formalize Fowler’s refactorings as refine-
ment laws in a relational calculus.

6 CONCLUSIONS AND FUTURE WORK

This work presents a rigorous approach for the refactoring on UML
static models at levels of PIMs, PSMs and | SMs. Our focus is on behavior-
preserving model-to-model transformations. The main contribution of
this paper is proposing a classification of refactorings at PIM, PSM and
ISM levels and a metamodeling-based refactoring process that allows
users to define refactorings step-by-step across PIM, PSMs and code
levels in a uniform way. Although the set of rules allows doing quite a
number of interesting refactorings, it is limited since it does not focus
on transformations that involve different UML views.

In aModel Driven Development different tools could be used to validate/
verify models at different abstraction levels (PIMs, PSMs, or implemen-
tations). In this direction we propose to formalize UML/OCL metamodels
and refactorings by using the metamodeling notation NEREUS that is
independent of any formal language and can be translated to specific
ones. A detailed description may be found at Favre (2005).

To demonstrate the feasibility of this approach, a prototype assisting
in the refactoring on object-oriented hierarchies in C++ was imple-
mented. The prototype implements a small, rather powerful, set of basic
transformation rules (folding, abstraction, union, factoring). In this
approach, mechanical tasks perform model transformations, verify
conditions of transformation rules and keep track of the development
process (Pereira et al, 2004). The prototype could be refined to be a
practical tool for MDA-based refactoring.
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