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1. INTRODUCTION
Initially, our paper reviews prior literature and techniques on the
effectiveness of red-light cameras in terms of traffic accidents, injuries,
fatalities, red-light tickets, and cost.  We then apply data mining
techniques to examine the data stored in the U.S. Department of
Transportation’s key database on vehicle fatalities to try to tease
patterns and rules related to red-light controlled intersections.

2. LITERATURE REVIEW
From 1992 to 2000, the number of fatal crashes at signal-controlled
intersections in the United States increased by 19 percent (IIHS, 2001).
Red light running (RLR) was the single most frequent cause of these
crashes, as pointed out by the Insurance Institute for Highway Safety
(IIHS, 2001) and equivalent to more than three times the rate of increase
for all other fatal crashes during the same period. According to the
Federal Highway Administration (FHWA), crash statistics show that
nearly 1,000 Americans were killed and 176,000 were injured in 2003
due to RLR related crashes. The monetary impact of crashes to the
society is approximately $14 billion annually (FHWA, 2005). The
California Highway Patrol estimates that each RLR fatality costs the
United States $2,600,000 and other RLR crashes cost between $2,000
and $183,000, depending on severity (CA Bureau of State Audits, 2002).

A 2005 study conducted within the District of Columbia by Wilber and
Willis (2005) showed remarkably different results than most of the other
studies:

“The analysis shows that the number of crashes at locations with
cameras more than doubled, from 365 collisions in 1998 to 755 last
year. Injury and fatal crashes climbed 81 percent, from 144 such wrecks
to 262. Broadside crashes, also known as right angle or T-bone
collisions, rose 30 percent, from 81 to 106 during that time frame. Traffic
specialists say broadside collisions are especially dangerous because
the sides are the most vulnerable areas of cars” (Wilber & Willis, 2005).

The study argues that crashes and injuries may have increased despite
or because of the red light cameras.  Some of this increase may be related

to increased traffic rates.  “The study found that rear-end crashes rose
15 percent at camera locations. But because broadside crashes are more
dangerous and cause greater damage, the study concluded that the
cameras can help reduce the costs of traffic accidents” (Wilber & Willis,
2005) .

But there are some limitations in the study.  First, it doesn’t account for
spillover effects, where the benefits of cameras at some locations can
be reflected at sites without cameras.  Second, the study blames the city
for focusing solely on revenues, even though the city was acting in the
interest of public safety because data showed initial improvements, prior
to the long-term study presented by The Washington Post and the city
had not expanded the program significantly prior to the results of a long-
term study (Wilber & Willis, 2005).

3.  DATA MINING
In response to the controversy of whether it’s ultimately a safety tool
to reduce red light running and traffic crashes, our research applies data
mining techniques to traffic data collected in Washington D.C. and
Maryland to determine the supporting data patterns. Traffic data has
been collected from the U.S. Department of Transportation’s Fatality
Analysis Reporting System (FARS) database (see Table 1).

Based on our analysis, data mining techniques have not been used in the
past to evaluate the effectiveness of red light camera enforcement.  Our
study applies data mining techniques to contribute to past research.

For our research, we narrowed the data to the years 2000-2003 and for
only Maryland and Washington DC.  First, we limited data to all fatal
crashes where a violation for red-light running was charged.  Second, we
limited the original data to fatal crashes at signal- controlled intersec-
tions, whether a ticket was issued or not. We used C5.0, C&RT and
CHAID decision tree models, as well as K-Means and Neural Network
models for the data mining analysis.

As indicated by the results of K-Means Models, car collisions are more
likely to happen on Fridays and Sundays. Types of car crashes involved
in running red lights are mostly rear-end crashes and angle front-to-side
collisions, as 1,517 cases and 890 cases were recorded, respectively. On
the other hand, results of Neural Network Models show the relationships
between fatal crashes at red-light-signal controlled intersections and
harmful events, and between fatal crashes at red-light-signal controlled
intersections and the manner of collision. The strongest relationship is
a collision with another moving object, most likely another vehicle. The
second strongest link is between fatal crashes and pedestrians. With the
respect to the nature of the crash, the strongest relationships are angle
and front-to-side collisions.
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For future work, our data was not specific to intersections and further
research is being conducted to examine violations before the camera is
installed, a short time lag after the camera is installed (6 months – 2
years), and after a significant time period has passed after the camera
is installed (5 – 10 years).
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Table 1. FARS Major Variables Used in Our Data Mining Application

Variable Description Examples Used 
VIOLCHG1 
or VIOLCHG2 
or VIOLCHG3 

Violations Charged (99 
factors) 
 

1  Fail to Stop for Red Signal 
2  Fail to Stop for Flashing Red 
3  Violation of Turn on Red  
4  Fail to Obey Flashing Signal (Yellow or 
Red) 
5  Fail to Obey Signal Generally 
6  Other 

DAY_WEEK Date of the crash/accident 
 

1   Sunday 
2   Monday 
3   Tuesday 
4   Wednesday 
5   Thursday 
6   Friday 
7   Saturday 
8   Unknown 

HARM_EV 
 
 
M_HARM 

First harmful event applies 
to the crash. (50 events) 
 
The most harmful event 
variable applies to the 
vehicle (50 event) 

1 Traffic Signal Support 
2 Fell from Vehicle 
3 Thrown or Falling Object 
4 Culvert 
5 Curb 
6 Unknown 

MAN_COLL Manner of Collision 0   Not Collision with Motor Vehicle in 
Transport 
1   Front-to-Rear (Includes Rear-End) 
2   Front-to-Front (Includes Head-On) 
3   Angle - Front-to-Side, Same Direction 
4   Angle - Front-to-Side, Opposite Direction 
5   Angle - Front-to-Side, Right Angle  
6   Angle - Front-to-Side/Angle-Direction Not 
Specified 
7   Sideswipe - Same Direction 
8   Sideswipe - Opposite Direction 
9   Rear-to-Side 
10 Rear-to-Rear 
11 Other (End-Swipes and Others) 
99 Unknown 
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