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ABSTRACT
The learning of stochastic context-free grammars from corpus using genetic 
algorithm is explored in this work. Minimum description length principle is used 
for deriving the fitness function of the genetic algorithm. Stochastic context-free 
grammars are evolved by optimizing the parameters of the covering grammars. 
I provide details of my fitness function for grammars and present the results of a 
number of experiments in learning grammars for a variety of languages.

INTRODUCTION
Stochastic context-free grammars (SCFGs) are perhaps best known as a tool for 
expressing the syntactic structure of natural languages. Practical techniques for 
grammar induction have many important applications or a wide range of natural 
language (NL). In recent years SCFGs have been widely applied to problems in 
computational biology, such as modeling the secondary structure of RNA families. 
Other applications include visual recognition of activities and language modeling 
for speech recognition, robotics. A problem of central importance in each of these 
applications is inducing SCFGs from data. 

Inferring a stochastic grammar from data, as revealed by most previous practice, 
involves in general two essential sub-tasks, one to infer a set of phrase structure 
rules (or productions), another to estimate a correspondent set of probabilistic 
parameters (i.e., production probabilities) The inference can be viewed as a search 
process	for	the	best	grammar	allowable	in	a	predefined	grammar	(or	hypothesis)	
space. There are many sophisticated algorithms exist to facilitate the searching, 
e.g., genetic algorithm and stimulated annealing algorithm. However, no matter 
how sophisticated is the search method in use, the goodness criterion to guide the 
searching remains a critical issue. It is this criterion that tells a search algorithm 
which grammar is better. In this project we developed a suitable criterion for the 
estimation of the parameters of the stochastic context-free grammars. It is based 
on the classic and algorithmic information theory and on the Minimum Descrip-
tion Length (MDL) principle and genetic algorithm. 

STOChASTIC CONTExT-FREE gRAMMAR (SCFg)
A stochastic context-free grammar (SCFG) is a variant of ordinary context-free 
grammar in which each grammar rule is associated with a probability, a real number 
in the range [0,1]. The set of production probabilities will be referred to as the 
parameters of the SCFG. For a SCFG to be proper, the probabilities associated 
with all rules that expand the same non-terminal symbol must be one.

The language L(G) generated by a SCFG G comprises the set of all strings of 
terminal symbols derivable from the start symbol of the grammar. In addition, the 
parameters	define	a	probability	distribution	over	strings	in	L(G).	For	a	string	α	є	
L(G),	the	probability	of	a	parse	tree	for	α	is	given	by	the	product	of	the	probabilities	
of all the grammar rules involved in its construction. The probability PG(α)	of	
the	string	α	is	the	sum	of	the	probabilities	of	all	of	its	parses.

S		→	AB		(1.0)

A	→	a						(0.6)

A	→	CS			(0.4)

B	→	b						(1.0)

C	→	a						(	1.0)

The above SCFG, with the probability associated with each production is 
given in parentheses, generates the language { anbn|	n≥1},	where	PG(ab)=0.6, 
PG(aabb)=0.24 and so on.

BIASED WEIghT gRAMMARS
Biased Weight Grammars are similar to SCFGs in that they associate numerical 
parameters with the rules of the grammars, a bias and a weight. Any BWG G can 
be converted to an equivalent SCFG G’. Let Grj denote the set of rules in G that 
expand the same nonterminal symbol as rule rj. Then each rule rj in G with bias 
bj and weight wj has a corresponding rule rj’ in G’ with associated probability 
pj given by

    (1)

The language generated by a BWG  G to be the same as L(G’), the language 
generated by its equivalent SCFG G’, with the same associated probability dis-
tribution over its sentences.

CORPUS-BASED gRAMMATICAl INFERENCE
A	corpus	C	for	a	language	L	is	a	finite	set	of	strings	drawn	from	L,	where	each	
string		α	є	C	is	associated	with	an	integer	fα representing its frequency of occur-
rence. The size Nc	of	the	corpus	is	defined	as	the	sum	of	the	frequencies	of	the	
individual strings in C. That is

Nc=∑	α	є	C		
f α																								 	 	 	 (2)

The relative frequency p α	of	a	string	α	є	C	is	defined		as	p	α=f α/Nc.Given a 
corpus C as training data, the inference problem is to identify a SCFG that (a) 
models the corpus as accurately as possible and (b) generalizes appropriately to 
the wider language from which the corpus was drawn. This problem is tackled 
by trying to identify a BWG with these properties taking its associated SCFG as 
the one learnt by our system.

For any probabilistic language model, natural measure of accuracy is the prob-
ability of the corpus data given the model. In this case, the most accurate model 
in this sense is that grammar G” given by

 

G”=argmaxG P(C|G)                                   (3)

Where P(C|G) ( the conditional probability of the language data C given by the 
grammar	G)	is	defined	as
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  (4)

On the other hand, simply maximizing the probability of the corpus data will not 
generally meet the  further requirement of generalization. A perfectly accurate 
model	is	one	which	generates	exactly	the	finite	corpus	and	assigns	to	each	string	
the correct relative frequency. In otherwords, the most accurate grammar will 
over-fit	the	training	data.	What	actually	require	is	the	grammar	that	is	most	prob-
able given the training data. That is, a grammar G” such that

G” = argmax G P(G|C)                        (5)

Unfortunately, it is not clear how to calculate P(G|C) directly. From Bayes rule 

P(G)P(C|G)

P(G|C) = P(C)     (6)

 

Ignoring P(C), which is a constant, maximizing P(G|C) just corresponds to 
maximizing the product of P(C|G) ( which can be calculated directly) and P(G), 
the	prior	probability	of	the	grammar	G.	This	poses	the	problem	of	fixing	an	ap-
propriate prior probability distribution over grammars. In principle there are many 
different priors that could be chosen, but it seems reasonable to assume that we 
should prefer smaller and simpler grammars to larger, more complex ones. Our 
choice of prior is therefore related to the minimum description length principle 
of Risannan as well as earlier work on inductive due to Solomanoff.

ThE MINIMUM DESCRIPTION lENgTh PRINCIPlE
Given some data D, we should pick that theory T which minimizes:

L(T)+L(D/T)

Where L(T) is the number of bits needed to minimally encode the theory T, and 
L(D/T) is the number of bits needed to minimally encode the data D given the 
theory T.

From Shannon’s information theory, we know that if we have a discrete set X of 
items	with	a	probability	distribution	P(x)	defined	over	it,	then	in	order	to	send	
a	message	identifying	x	ε	X	we	need	approximately	L(x)=	-log

2 
 (P(x))bits. In 

other words,

P(x)= 2
-L(x)                                                      

(7)

This enables us to interpret the M D L principle in Bayesian terms. From the equa-
tion it can easily be seen that minimizing L(T)+L(D/T) corresponds to maximizing 
P(T)P(D/T) and hence P(T/D).

It should be noted that for us the most useful feature of the M D L Principle is that 
it can be used “inverse”. Information theory (Shannon 1948) tells us how work 
out minimum code lengths given prior knowledge of the probability distributes 
over items in some set of interest. The M D L Principle enables us to assign prior 
probabilities to items in some set in a meaningful way, even if we do not really 
have	enough	prior	knowledge.	We	can	do	this	by	attempting	to	find	minimal	length	
encoding for the items and then use equation (4) to work out the probabilities.

ThE gENETIC AlgORIThM FOR SCFgS
Given a corpus C as training data, our approach to grammatical inference involves 
the following steps

1. Construct a covering grammar that generates the corpus as a (proper) sub-
set.

2. Set up a population of individuals encoding parameter settings for the rules 
of the covering grammar.

3. Repeatedly apply genetic operations ( crossover, mutation) to the selected 
individuals in the population until an optimal set of parameters in found.

The covering grammar is in the Chomsky Normal Form (CNF) and contains every 
rule	of	the	form	A	→	BC	and	every	rule	of	the	form	A→	a.	

A member of the population encodes a set of weights for the rules of the covering 
grammar.	Each	weight	is	encoded	as	a	binary	integer,	using	w	a	fixed	length	bit	
string. The bias associated with each rule is determined in advance according to 
a prior probability distribution p” over grammar rules. Thus, for a rule r in the 
covering grammar the associated bias is given by p”(r). The prior distribution is 
chosen	to	reflect	a	preference	for	shorter,	simpler	rules.	This	makes	it	easier	for	
the genetic algorithm to learn grammars of the sort we prefer(simpler and shorter) 
because changes to the weights of more heavily biased rules have a greater effect 
on the resulting probabilities of the sentences in the corpus. Consequently the 
algorithm is far more sensitive to simpler, shorter rules. 

The members of the initial population are generated randomly after which the 
genetic algorithm repeatedly executes the following select-breed-replace cycle.

 

Select a random member of the population for breeding using roulette selection 
method.

Breed by applying crossover and mutation to produce two children.
Replace the	weakest	parent	by	the	fittest	child.

In crossover operation, variable size cromosomes are used. In making a chromosome 
for a set rules, only those rules are included for which the weight is not zero.

ThE FITNESS FUNCTION
In practice, it is not convenient to compute the conditional probability P(G|C) 
directly	as	a	means	of	evaluating	the	fitness	of	grammars.	Instead,	the	genetic	
algorithm uses an objective function F given by

    (8)

Maximizing F(G) corresponds to minimizing the denominator of equation. This in 
turn just amounts to maximizing P(G|C). The numerator Kc is a problem(corpus) 
dependent	normalization	factor	that	yields	fitness	values	in	the	range	[0,1].

Since L(C|G)=   -log
2
P(C|G) it is given by

   (9)

The	first	 term	is	a	constant	 (depending	only	on	 the	corpus)	and	 therefore	can	
be ignored in minimizing the denominator of equation 5. The second term is 
Nc times the cross entropy of the corpus C given the model provided by the 
grammar G. It can be interpreted as the number of bits needed to communicate 
the corpus (with the frequencies given) using a code guaranteed to minimize 
message length if the sentences had occurred in the corpus with probabilities as 
given by the grammar.

In order to compute L(G), the grammar is represented as a code. Different choices 
of coding scheme give rise to different probability distribution over the set of gram-
mars. In genetic algorithm, a coding scheme is used in which  a grammar can be 
represented in any convenient fashion as a genome, compute its length according 
to our chosen coding scheme and hence assign it a prior probability.

For	BWGs	with	a	fixed	determined	set	of	biases,	a	grammar	is	completely	specified	
by some set of pairs of the form (r,w), where r is a rule and w its weight. Pairs are 
omitted if their weight is zero. The length for the whole grammar is given by the 
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sum of the lengths of the codes for each of its rules, where the length of the code 
of a rule is given by the length of a code for r plus length of a code for w.

To	encode	a	weight	w,	one	of	a	family	of	prefix	codes	for	integers	which	all	form	
good approximations to the minimal encoding can be used. These codes represent 
an integer by a code for the integer itself, preceded by a code for its length. The 
code for the integer w requires 

approximately log
2
(w) bits while the code for its length needs roughly log

2
(log

2
(w)) 

bits(using normal binary encoding). However this does not give any way of 
deciding  where the code for the length ends and the code for the integer w itself 
begins. Therefore a code is used which duplicates every binary digit of the integer 
representing the length followed by a single  0. This means that an integer w will 
need approximately log

2
(w)+2log

2
(log

2
(w))+1 bits.

To compute the code lengths for r, a probability distribution P”(r)  over the rules 
is	defined.	A	natural	way	of	computing	the	probabilities	of	each	rj is to look at 
the probabilities of the symbols in each position of the set of rules in the covering 
grammar. In particular, we look at the set of symbols allowed at a given position 
in the rules given the preceding symbols. If all legal symbols at that position can 
occur with equal probability, then P”(r) can be computed as follows

Let N be the set of non-terminal symbols in the covering grammar G and let n 
be the length of right hand side of the longest rule. Now write each rule rj in the 
form Sj0

→Sj1
Sj2

…Sjn 
where Sjm

	is	defined	to	be	a	special	“blank”	symbol	for	
all m greater than the length of the right hand side of rule rj.	Define	Sjk

	(0≤k≤n)	
to be that set of symbols given by

           

N   if k=0 and

Sjk
=	{	Sjk	|	э	ri	ε	G	such	that	Sil

=Sjl
	(0≤l≤k)	}	otherwise									 (10)

The probability P”(rj) of rule rj is than given by 

P”(rj)=∏	0≤k≤n
Pjk                                                                        

(11)

Where	Pjk(0≤k≤n)	is	defined	as	1/|Sjk
|

Given the probability distribution P over rules, the number of bits needed to 
represent a particular weighted grammar is given by

∑
(r,w)εG

  ( -log
2
(P”(r) + log

2
(w)+2log

2
(log

2
(w))+1        (12)

This quantity is of course L(G) = -log
2
(P(G))

AlgORIThM FOR EVOlVINg STOChASTIC CONTExT-
FREE gRAMMAR
To identify a Stochastic Context Free Grammar for a given corpus as training 
data that (a) models the corpus as accurately as possible and (b) generalizes ap-
propriately to the wider language from which the corpus was drawn, the steps 
involved are as follows

Step 1: Identify a covering grammar for a given corpus as training data using 
Sequitur algorithm. The grammar must be as small as possible and simple.

Step 2: Generate all parses for all strings in the corpus derivable from the covering 
grammar using All Parse algorithm.

Step 3: Convert a stochastic context free grammar in to a biased weight gram-
mar. Associate numerical parameters with the rules of the grammar, a bias 
and a weight

Step 4:	Code	grammar	using	prefix	coding	scheme	for	integers.	This	scheme	is	
used to represent a grammar a convenient fashion as a genome. Compute 
its length according to our chosen coding scheme. The length of the whole 
grammar is given by the sum of the lengths of the codes for each of each of 
its rules, where the length of the code of a rule is given by the length of a 
code for r plus length of a code for w.

Step 5: Determine an objective function for the genetic algorithm to evaluate the 
fitness	of	grammars.

Step 6: Apply genetic algorithm for setting the parameters of the stochastic 
context-free grammar.Genetic algorithm is repeated until a threshold value 
is achieved for parameters of SCFG or a maximum iteration value is reached. 
Threshold value is dependent of the type of the language generated by the 
grammar G.

ExPERIMENTAl RESUlTS
We have conducted a number of experiments in learning grammars for a range 
of formal languages. These languages are representative of those considered in 
other studies.

1.  (a+b)*bb: the language is the set of strings ending with a sequence of at least 
two bs.

2.  EQ: the language of all strings consisting of equal number of as and bs, 
(ab+ba)(ab+ba)*.

3.  The language a
n
b
n
 (n≥1).

4.  BRACKET: The language of balanced brackets.
5.  PAl: palindromes over {a,b}.

For	each	experiment,	a	corpus	was	first	produced	automatically	using	a	hand-
crafted SCFG for the target language. This involved randomly generating on the 
order	of	1000	strings	up	to	a	pre-specified	‘maximum	sentence	length’	(typically	
6	or	8).	For	each	problem,	the	population	size	was	fixed	to	25.

In order to assess the performance of the genetic algorithm, 20 runs were completed 
on each language learning task. A run of the genetic algorithm was terminated as 
‘successful’	if	a	SCFG	was	found	with	fitness	above	a	threshold	value	of	0.93.	
While	 this	figure	 is	somewhat	arbitrary,	experience	has	shown	 that	grammars	
attaining	this	fitness	are	usually	correct	in	the	sense	that	they	generate	the	target	
language exactly, and assign appropriate probabilities to the strings. Runs of the 
genetic algorithm that failed to attain the threshold value were terminated after 
a maximum number of select-breed-replace cycles. The number of cycles was 
set individually for each problem and was high enough to ensure convergence 
in the population.

The results of the experiments are summarized in the table given above. For each 
learning task, the table gives the number of non-terminals used in the covering 
grammar, the number of parameters to be optimized, the success rate (number of 
runs	that	attained	the	threshold	fitness	value)	as	well	as	the	maximum	fitness	value	
found on the best and the worst runs of the genetic algorithm. As can be seen, 

language Non-terminals Parameters Success rate Best fitness 
value

Worst fitness 
value

g1: (a+b)*bb 3 6 19/20 0.972 0.946
g2: EQ 3 5 18/20 0.970 0.681
g3: BRACKET 3 5 20/20 0.955 0.949
g4: a

n
b
n

4 5 19/20 0.978 0.866
g5: PAL 5 10 14/20 0.951 0.869

Table 1. Experimental result for different type of grammars
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the	first	four	tasks	((a+b)*bb,	EQ,	a
n
b
n
,	BRACKET)	presented	little	difficulty.	

Inspection of the grammars produced on successful runs for these experiments 
showed that they were indeed correct. For the occasional unsuccessful runs the 
relatively	poor	fitness	values	attained	suggest	the	presence	of	local	maxima	around	
which the population has converged. The palindrome example PAL provided the 
algorithm with a rather harder test. Here, the success rate fell to around 65% to 
70%.	On	runs	where	the	algorithm	failed	to	find	the	correct	grammar,	inspection	of	
the best grammars showed that the population had converged on solutions, which 
had the correct rules for palindromes starting with any of the available symbols, 
except for one. Because these grammars covered the palindromes while assign-
ing generally low probability to a range of other sentences they still managed to 
attain	a	relatively	high	fitness.

Figure 1 shows that success rate is generally greater than 90% for the grammars. 
It depends on the complexity of the grammar.

CONClUSIONS 
The approach to grammatical inference described in this project differs from pre-
vious works using genetic algorithms in addressing the problem of corpus-based 
inference of stochastic context-free grammar. In our approach number of rules in 
covering grammar is reduced by using sequitur algorithm and convergence rate 
of genetic algorithm is speedup by using variable crossover over variable length 
chromosome algorithm. This makes direct comparison our results with those of 
other	algorithms	difficult.	However,	the	experiments	that	we	have	conducted	are	
typical of those in other studies and the results reported in this project appear 
promising. The approach also appears to compare well with other (non-genetic) 

techniques for stochastic grammatical inference.The main limitation of our ap-
proach	is	the	cost	involved	in	evaluating	the	fitness	of	each	candidate	solution,	
which requires parsing every string in the corpus in all possible ways. Success 
rate of our algorithm depends on the complexity of the grammar. Although infer-
ence can be performed very quickly for small covering grammars, the number of 
parses that must be considered increases exponentially with the number of rules 
in the grammars. This problem can be solved by including the possibility of a 
massively parallel implementation of this algorithm.
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Figure 1. Graph between success rate and grammar given in table 1



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/evolving-stochastic-context-free-rammars/33403

Related Content

BTCBMA Online Education Course Recommendation Algorithm Based on Learners' Learning

Quality
Yanli Jia (2023). International Journal of Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/btcbma-online-education-course-recommendation-algorithm-based-on-learners-learning-

quality/324101

Visible Light Communication Numerous Applications
Ala' Fathi Khalifeh, Hasan Farahneh, Christopher Mekhieland Xavier Fernando (2018). Encyclopedia of

Information Science and Technology, Fourth Edition (pp. 6672-6683).

www.irma-international.org/chapter/visible-light-communication-numerous-applications/184362

Implications of Pressure for Shortening the Time to Market (TTM) in Defense Projects
Moti Frankand Boaz Carmi (2014). International Journal of Information Technologies and Systems Approach

(pp. 23-40).

www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088

Ontology Learning from Thesauri: An Experience in the Urban Domain
Javier Nogueras-Iso, Javier Lacasta, Jacques Teller, Gilles Falquetand Jacques Guyot (2010). Ontology

Theory, Management and Design: Advanced Tools and Models  (pp. 247-260).

www.irma-international.org/chapter/ontology-learning-thesauri/42893

Status of University Libraries in India
Mayank Yuvaraj (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 4911-4919).

www.irma-international.org/chapter/status-of-university-libraries-in-india/112938

http://www.igi-global.com/proceeding-paper/evolving-stochastic-context-free-rammars/33403
http://www.igi-global.com/proceeding-paper/evolving-stochastic-context-free-rammars/33403
http://www.irma-international.org/article/btcbma-online-education-course-recommendation-algorithm-based-on-learners-learning-quality/324101
http://www.irma-international.org/article/btcbma-online-education-course-recommendation-algorithm-based-on-learners-learning-quality/324101
http://www.irma-international.org/chapter/visible-light-communication-numerous-applications/184362
http://www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088
http://www.irma-international.org/chapter/ontology-learning-thesauri/42893
http://www.irma-international.org/chapter/status-of-university-libraries-in-india/112938

