
DOI: 10.4018/IJSI.339884

International Journal of Software Innovation
Volume 12 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

The Study on Software Architecture 
Smell Refactoring
Kuo Jong-Yih, National Taipei University of Technology, Taiwan

Hsieh Ti-Feng, National Taipei University of Technology, Taiwan

Lin Yu-De, National Taipei University of Technology, Taiwan

Lin Hui-Chi, National Taipei University of Technology, Taiwan*

 https://orcid.org/0000-0002-0492-5428

ABSTRACT

Maintenance and complexity issues in software development continue to increase because of new 
requirements and software evolution, and refactoring is required to help software adapt to the changes. 
The goal of refactoring is to fix smells in the system. Fixing architectural smells requires more effort 
than other smells because it is tangled in multiple components in the system. Architecture smells 
refer to commonly used architectural decisions that negatively impact system quality. They cause 
high software coupling, create complications when developing new requirements, and are hard to 
test and reuse. This paper presented a tool to analyze the causes of architectural smells such as cyclic 
dependency and unstable dependency and included a priority metric that could be used to optimize 
the smell with the most refactoring efforts and simulate the most cost-effective refactoring path 
sequence for a developer to follow. Using a real case scenario, a refactoring path was evaluated with 
real refactoring execution, and the validity of the path was verified.

KeywoRdS
Architecture Smell, Refactoring Strategies, Refactoring Tool

INTRodUCTIoN

In the software development life cycle (SDLC), the scale of a software project will grow because 
of the evolution in software requirements, IT equipment upgrades, and technology change (Lehman 
et al., 1996), which cause the cost of software maintenance and its complexity to increase. In order 
to maintain the quality of a project, teams will need to perform code refactoring regularly to reduce 
the accumulation of project technical debt (Suryanarayana et al., 2014). The best chance to do 
refactoring in a project is the region where smells are located. The smell is a surface indication that 
usually corresponds to a deeper problem in the system (Fowler et al., 1999). It can be classified into 
code smell (Fowler et al., 1999), design smell (Suryanarayana et al., 2014), and architectural smell 
(Lippert et al., 2006).



International Journal of Software Innovation
Volume 12 • Issue 1

2

Architecture smell (AS) is defined as common, but not always intentional, solutions used in 
architectural decisions that negatively impact software quality (Garcia et al., 2009). AS has relations 
with software architecture, and it may be involved in the division of a system into components, the 
arrangement of those components, and the ways in which those components communicate with each 
other (Martin, 2017).

The refactoring of AS involves coordinating a set of deliberate architectural activities that 
remove a particular architectural smell and improve at least one quality attribute without changing the 
system’s scope and functionality (Sas et al., 2019). To help developers to remove AS, we developed 
a tool prototype as a support for AS refactoring that could analyze the actual cause of the AS and 
the recommended refactoring process based on the architecture smell using variable parameters and 
characteristic metrics (Arcelli et al., 2017).

The remainder of this paper is structured as follows: the second section introduces relevant 
terms in the field of architectural smells (AS), architectural smell refactoring, and related tools. 
The third section presents the research methodology used in this study and outlines the design 
of the refactoring process strategies. The fourth section describes the implementation of the 
device, presents a case study, and analyzes the results. Section five serves as the conclusion 
of the research.

ReLATed woRK

Architecture Smell
Architecture smell is considered to violate the common design principle and affects the internal 
quality of software. It increases the coupling of components and may break the modularity of 
the system. Different authors have provided different definitions of AS according to different 
levels, such as Lippert et al., (2006), who defined AS’s in dependency graphs, packages, 
subsystems, layers, and so on. Fontana et al., (2019) propose a tool called Arcan developed 
for the detection of architectural smells. Evaluate the PageRank and Criticality of these smells 
through the analysis of six projects These architectural smells are categorized into three types 
based on dependency issues, such as cyclic dependency (CD), unstable dependency (UD), 
and hub-like dependency (HL). This analysis has provided the architecture smell related to 
dependency issues, such as cyclic dependency (CD), unstable dependency (UD), and hub-
like dependency (HL). Azadi et al., (2019) provide a proposal for AS classification (Figure 
1) based on the violation of three design principles, including the principles of modularity 
(Suryanarayana et al., 2014), hierarchy (Suryanarayana et al., 2014), and healthy dependency 
structure (Caracciolo et al., 2016).

The AS chosen in this study included CD and UD, which can be detected by the Arcan tool 
in the detection of three smells in two industrial projects (Arcelli et al., 2016), and both violate the 
principle of the healthy dependency structure. CD also violates the principle of modularity, making 
it difficult to modify the requirements in the system and affecting the changeability and reusability 
of components related to the AS.

Cyclic dependency
Cyclic Dependency (CD) represents a cycle among several components; it will lead the side effect 
when we try to modify the components in cycle. There are several software design principles that 
suggest avoiding creating such cycles, like Acyclic Dependencies Principle (Martin, 2003) and The 
Common Closure Principle (Robert, 2003). CD may have different topological shapes, which is shown 
in Figure 2, provided by Al-Mutawa et al., (2014). More complex shapes mean that the maintainability 
of the system is reduced because of the affected part.



 

 

15 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/the-study-on-software-architecture-smell-

refactoring/339884

Related Content

Towards Next Generation Provenance Systems for e-Science
Fakhri Alam Khan, Sardar Hussain, Ivan Janciakand Peter Brezany (2011).

International Journal of Information System Modeling and Design (pp. 24-48).

www.irma-international.org/article/towards-next-generation-provenance-systems/55487

Software Testing
Pooja Kapleshand Severin K. Y. Pang (2020). Software Engineering for Agile

Application Development (pp. 189-211).

www.irma-international.org/chapter/software-testing/250443

Test-Case Mutation
Macario Poloand Mario Piattini (2007). Verification, Validation and Testing in

Software Engineering (pp. 157-176).

www.irma-international.org/chapter/test-case-mutation/30751

Behavior Studies of Nonlinear Fractional-Order Dynamical Systems Using

Bifurcation Diagram
Karima Rabah (2018). Advanced Synchronization Control and Bifurcation of Chaotic

Fractional-Order Systems (pp. 166-189).

www.irma-international.org/chapter/behavior-studies-of-nonlinear-fractional-order-dynamical-

systems-using-bifurcation-diagram/204800

Performance-Aware Approach for Software Risk Management Using

Random Forest Algorithm
Alankrita Aggarwal, Kanwalvir Singh Dhindsaand P. K. Suri (2021). International

Journal of Software Innovation (pp. 12-19).

www.irma-international.org/article/performance-aware-approach-for-software-risk-management-

using-random-forest-algorithm/266279

http://www.igi-global.com/article/the-study-on-software-architecture-smell-refactoring/339884
http://www.igi-global.com/article/the-study-on-software-architecture-smell-refactoring/339884
http://www.igi-global.com/article/the-study-on-software-architecture-smell-refactoring/339884
http://www.irma-international.org/article/towards-next-generation-provenance-systems/55487
http://www.irma-international.org/chapter/software-testing/250443
http://www.irma-international.org/chapter/test-case-mutation/30751
http://www.irma-international.org/chapter/behavior-studies-of-nonlinear-fractional-order-dynamical-systems-using-bifurcation-diagram/204800
http://www.irma-international.org/chapter/behavior-studies-of-nonlinear-fractional-order-dynamical-systems-using-bifurcation-diagram/204800
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279

