
DOI: 10.4018/JDM.339915

Journal of Database Management
Volume 35 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Efficient NoSQL-Based Storage
Schema for Large-Scale Time Series Data
Ruizhe Ma, University of Massachusetts, Lowell, USA

Weiwei Zhou, Nanjing University of Aeronautics and Astronautics, China

Zongmin Ma, Nanjing University of Aeronautics and Astronautics, China*

 https://orcid.org/0000-0001-7780-6473

ABSTRACT

In IoT (internet of things), most data from the connected devices change with time and have sampling
intervals, which are called time-series data. It is challenging to design a time series storage model
that can write massive time-series data in a short time and can query and analyze the persistent
time-series data for a long time. This paper constructs the RHTSDB (Redis-HBase Time Series
Database) storage model based on Redis and HBase. RHTSDB uses the memory database Redis
(Remote Dictionary Server) to cache massive time-series data, providing efficient data storage and
query functions. HBase is used in RHTSDB for long-term storage of time-series data to realize their
persistence. The paper designs a cold and hot separation mechanism for time-series data, where the
infrequently accessed cold data are stored in HBase, and the frequently accessed and latest data are
stored in Redis. Experiments verify that RHTSDB has apparent advantages over Apache IoTDB and
HBase in data intake and query efficiency.

KEywoRDS
HBase, Query, Redis, Storage, Time-Series Data

INTRoDUCTIoN

With the development of the Internet of Things (IoT) (Eom & Lee, 2017), the amount of time-series
data has shown explosive growth. Time-series data refers to a sequence of data points collected
at fixed time intervals (Lee & Chung, 2014). Each data point is associated with a timestamp that
indicates the generation time of the corresponding data. Typically, the data collected by a sensor in
a particular period can be expressed as a time series [(t1, v1), (t2, v2), ..., (tn, vn)], where vi refers to the
value collected at ti time (Di Martino et al., 2019). Of course, complete time-series data can include
the collection time and collection value as well as the source description information of the current
collection value. For example, we need to include some measurement data information, such as the
names of collection subject and collection index. Comprehensive use cases in the real world have
generated a large amount of measurement data from millions or billions of different sources. Slack

Journal of Database Management
Volume 35 • Issue 1

2

collects measurement data from 4 billion unique sources at 12 million samples per second daily, for
example, generating up to 12 TB of compressed data daily. It is essential to manage and process a
large amount of time-series data efficiently. Unfortunately, many off-the-shelf systems cannot scale
to support these workloads, which leads to the random Patchwork and vulnerability of customized
solutions (Solleza, Crotty, Karumuri, Tatbul & Zdonik, 2022). For this reason, diverse time series
databases are proposed to ensure efficient ingestion performance and save storage space as much
as possible. Given that time-series data in applications are generally massive and redundant data
containing source description information in time-series data are enormous, efficient storage and
query of massive time-series data is challenging.

We identify two major categories of time series databases: which are respectively called native
time series databases and common time series databases in this paper. The native time series databases
are the storage systems that are developed especially for time-series data management according to
their structural and usage characteristics, such as InfluxDB1, FluteDB (Li et al., 2018), and Apache
IoTDB (Wang et al., 2020 & 2023). This category of time series databases can efficiently reduce
the overhead of storage space and the query delay. However, for time-series data management and
processing, many other functions and operations are essential in time series databases, such as flexible
aggregation, data retention, multidimensional range query, among others. While the native time series
databases cannot provide full support to time-series data analysis well, mature database systems
are good at dealing with relationships between data and support many unnecessary operations and
guarantees for time series, increasing inefficiency and unnecessary complexity (Shafer, Sambasivan,
Rowe, & Ganger, 2013). The common time series databases are the storage systems that directly
apply the common databases for storing and processing time-series data. Depending on what types
of databases are applied, we further identify two categories of common time series databases. The
first one uses relational databases as the back end of common time series databases (e.g., (Rhea et al.,
2017)). In recent years, NoSQL (Not only SQL) databases have attracted increasing attention from
both academia and industry (Hu & Dessloch, 2015), which offer flexible data representation models
and horizontal hardware scalability so that Big Data can be processed in real time (Bajaj & Bick,
2020). The second category of common time series databases uses NoSQL databases for processing
time-series data (Di Martino et al., 2019).

NoSQL databases contain four major types of database models: key-value stores, column-family
stores, document stores, and graph stores (Grolinger et al., 2013; Van Erven et al., 2019). Different
types of NoSQL databases, say Redis2 (a key-value store), HBase3 (a column-family store), Cassandra4
(a column-family store), MongoDB5 (a document store), Couchbase6 (a document store), OrientDB7
(a graph store), have very different performances (Matallah, Belalem & Bouamrane, 2020). Among
these NoSQL databases, for example, Redis (remote dictionary server) is a high-performance memory-
based NoSQL database, which has excellent data writing performance and supports data persistent
storage and replication of master-slave nodes (Zhou, Lu, Zhang & Qi, 2020); HBase, an open-source,
distributed and versioned NoSQL database, uses Hadoop distributed file system (HDFS) to provide
distributed file storage services, which has the characteristics of high availability, robust scalability
and the ability to store massive data. With one of NoSQL databases as back end, some storage models
for massive time-series data have been developed, for example, ModelarDB+ (Jensen, Pedersen &
Thomsen, 2021) based on Cassandra, NagareDB (Calatrava, Fontal, Cucchietti & Diví-Cuesta, 2021)
built on top of MongoDB, OpenTSDB8 based on HBase, and KairosDB9 based on Cassandra.

Selecting a specific NoSQL database for massive time-series data management is more flexible
and cost-saving, where the performance of the storage model is determined by the performance of the
used database models (Rinaldi et al., 2019). It has been demonstrated that different NoSQL databases
have very different performances (Matallah, Belalem & Bouamrane, 2020). For ingestion of large-
scale time-series data into the target time series database, for example, the storage consumption of
HBase slowly increases along with a significant increase in data size (e.g., a 50% increase in data
size requires about a 20% increase in storage consumption). However, the storage consumption of

19 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/an-efficient-nosql-based-storage-schema-

for-large-scale-time-series-data/339915

Related Content

NetCube: Fast, Approximate Database Queries Using Bayesian Networks
Dimitris Margaritis, Christos Faloutsosand Sebastian Thrun (2009). Selected

Readings on Database Technologies and Applications (pp. 471-489).

www.irma-international.org/chapter/netcube-fast-approximate-database-queries/28567

A Review on the Integration of Deep Learning and Service-Oriented

Architecture
Marcelo Fantinato, Sarajane Marques Peres, Eleanna Kafeza, Dickson K. W.

Chiuand Patrick C. K. Hung (2021). Journal of Database Management (pp. 95-119).

www.irma-international.org/article/a-review-on-the-integration-of-deep-learning-and-service-

oriented-architecture/282446

Bridging Relational and NoSQL Worlds
 (2018). Bridging Relational and NoSQL Databases (pp. 177-238).

www.irma-international.org/chapter/bridging-relational-and-nosql-worlds/191984

Mobile Information Processing Involving Multiple Non-Collaborative Sources
Say Ying Lim, David Taniarand Bala Srinivasan (2009). Database Technologies:

Concepts, Methodologies, Tools, and Applications (pp. 1108-1126).

www.irma-international.org/chapter/mobile-information-processing-involving-multiple/7961

Simplifying the Formulation of a Wide Range of Object-Oriented Complex

Queries
Reda Alhajj (2000). Journal of Database Management (pp. 20-29).

www.irma-international.org/article/simplifying-formulation-wide-range-object/3250

http://www.igi-global.com/article/an-efficient-nosql-based-storage-schema-for-large-scale-time-series-data/339915
http://www.igi-global.com/article/an-efficient-nosql-based-storage-schema-for-large-scale-time-series-data/339915
http://www.igi-global.com/article/an-efficient-nosql-based-storage-schema-for-large-scale-time-series-data/339915
http://www.irma-international.org/chapter/netcube-fast-approximate-database-queries/28567
http://www.irma-international.org/article/a-review-on-the-integration-of-deep-learning-and-service-oriented-architecture/282446
http://www.irma-international.org/article/a-review-on-the-integration-of-deep-learning-and-service-oriented-architecture/282446
http://www.irma-international.org/chapter/bridging-relational-and-nosql-worlds/191984
http://www.irma-international.org/chapter/mobile-information-processing-involving-multiple/7961
http://www.irma-international.org/article/simplifying-formulation-wide-range-object/3250

