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ABSTRACT

With the fast growth of aquatic data, machine learning is essential for data analysis, 
categorization, and prediction. Data-driven models using machine learning may 
effectively handle complicated nonlinear problems in water research, unlike 
conventional approaches. Machine learning models and findings have been used to 
build, monitor, simulate, evaluate, and optimize water treatment and management 
systems in water environment research. Machine learning may also enhance water 
quality, pollution control, and watershed ecosystem security. This chapter discusses 
how ML approaches were used to assess water quality in surface, ground, drinking, 
sewage, and ocean. The authors also suggest potential machine learning applications 
in aquatic situations.
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Prediction of Water Quality Using Machine Learning

1. INTRODUCTION

Wastewater carrying toxins from fast economic growth threatens natural water 
ecology. So, several water pollution management methods evolved. Water quality 
analysis and assessment have greatly enhanced water pollution control efficiency. 
The multivariate statistical approach, fuzzy inference, and water quality index (WQI) 
are among the various methods used to monitor and measure water quality globally. 
While many water quality metrics may be traced in accordance with regulations, the 
final findings may vary according to parameter selection. Taking into account that 
all water quality metrics is impractical due to cost, technical difficulty, and inability 
to account for variability. Recently, developments in machine learning have led 
academics to anticipate that huge volumes of data may be achieved and assessed to 
accomplish complex and large-scale water quality monitoring needs.

ML algorithms are used in artificial intelligence to examine data and find patterns 
to forecast future information. With its accuracy, flexibility, and extensibility, machine 
learning has become a popular data analysis and processing tool in several fields. 
Machine learning simplifies the finding of underlying mechanisms for complex 
nonlinear relational data. Recently, ML showed a huge potential as a tool in ecological 
science and engineering due to its versatility. In spite of the difficulty of ML for 
water quality measurement and assessment, much precise results are predicted.

Complex water kinds include drinking, wastewater, and groundwater, surface, 
marine, and fresh. These water kinds have varied qualities, making quality study 
difficult. Previous research suggests that machine learning may effectively handle 
these difficulties. In this study, we address the pros and cons of typical ML approaches 
and their implementations and performance in surface water, groundwater, drinking 
water, wastewater, and ocean water (Fig. 1).

ML is commonly utilized to find insights or have predictions from vast data 
from many contexts. Prior to using ML, data collecting, algorithm selection, model 
training, and validation are needed. Among these methods, selecting algorithm is 
the key aspect.

Machine learning has two primary classes: supervised and unsupervised. Labels 
in datasets distinguish these two kinds. Supervised learning predicts from labeled 
training datasets. Input and anticipated output values are included in each training 
instance. Supervised learning algorithms discover input-output correlations and 
create a predictive model to estimate the outcome from the I/P data. Supervised 
learning methods, such as LR, ANN, decision trees, SVM, Naive Bayes, KNN, and 
random forests are designed for data classification and regression.

In contrast, unsupervised learning handles data generally without labels, addressing 
pattern recognition problems using unlabeled training datasets. Unsupervised learning 
classifies training data depending on features, primarily via dimensionality reduction 
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