
 25

Chapter II
Modular Rule-Based

Programming in 2APL
Mehdi Dastani

Intelligent Systems Group, Utrecht University, The Netherlands

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter presents a modular version of a rule-based programming language called 2APL (A Practical
Agent Programming Language). This programming language is designed to support the implementa-
tion of multi-agent systems where individual agents are specified in terms of cognitive concepts such as
beliefs, goals, event, actions, plans, and three types of reasoning rules. The reasoning rules facilitate
an effective integration of these concepts and allow generation, repair, and execution of plans based on
beliefs, goals, and events. The modules can be used to implement different agent concepts such as roles
and agent profiles, or to adopt common programming techniques such as encapsulation and informa-
tion hiding. The syntax and the informal semantics of the programming constructs of modular 2APL
are presented and discussed. A simple example is provided to illustrate how various ingredients of the
presented programming language can be used.

INtrODUctION

Agent-oriented software engineering paradigm
is a modern approach for the development of
distributed intelligent systems. In this paradigm,
software systems (called multi-agent systems) con-
sist of a number of interacting (software) agents,
each of which is capable of sensing its environ-

ment (including other agents) and deciding to act
in order to achieve its design objectives. Examples
of such systems are e-commerce applications, auc-
tions, electronic institutions, power management
systems or transportation systems.

Multi-agent systems are specified, designed,
and implemented in terms of high-level concepts
and abstractions such as roles, communication,

26

Modular Rule-Based Programming in 2APL

beliefs, goals, plans, actions, and events. Differ-
ent development methodologies (Bergenti et al.,
2004), specification languages (e.g., BDICTL (Rao et
al., 1991, Cohen et al., 1990) and KARO (Meyer et
al., 1999), and programming languages (Bordini et
al., 2007, Winikoff et al., 2005, Pokahr et al., 2005,
Hindriks et al. 1999, Kakas et al. 2004, Giacomo
et al. 2000) have been proposed to facilitate the
development of agent-based systems.

While most agent-oriented development meth-
odologies specify and design system architectures
in terms of agent concepts and abstractions, the
proposed agent-oriented programming languages
and development tools aim at providing program-
ming constructs to facilitate direct and effective
implementation of these concepts and abstrac-
tions. Moreover, existing agent-oriented program-
ming languages aim at supporting programming
techniques such as modularity, reuse, encapsu-
lation and information hiding. The availability
and combination of agent-oriented programming
constructs and programming techniques char-
acterize and differentiate these programming
languages and determine their usefulness and
applicability.

Existing agent-oriented programming lan-
guages differ as they provide programming
constructs for specific, sometimes overlapping,
sets of agent concepts and abstractions. They
also differ as they are based on different logics
and use different technologies. Some of them are
rule-based capturing the interaction of agent con-
cepts by means of specific rules, while others are
extension of Java programming language. Some
capture specific rationality principles that under-
lie agent concepts in their semantics, while such
principles are assumed to be implemented by agent
programmers in other programming languages.
Finally, they differ in programming techniques
that are introduced to support the implementation
of multi-agent systems. See (Bordini et al., 2005)
for a comparison between some of these agent
programming languages.

In this chapter, a modular rule-based agent-
oriented programming language is presented
that 1) separates multi-agent from single-agent
concerns, 2) provides and integrates programming
constructs that are expressive enough to imple-
ment a variety of agent concepts and abstractions
used in the existing agent-oriented methodologies,
3) provides different types of rules to capture
the interaction of agent concepts such as beliefs,
goals and plans, 4) introduces a specific notion
of modules and provides a set of module related
operations that allows an agent programmer to
determine how and when modules are used, and
5) realizes an effective integration of declarative
and imperative programming styles. It is im-
portant to emphasize that multi-agent systems
can be implemented in any existing program-
ming language. However, we aim at designing
an agent-oriented programming language that
provides dedicated and expressive programming
constructs and techniques to facilitate practical
and effective implementation of agent related
concepts and abstractions.

The structure of this chapter is as follows. In the
next section, we provide a brief discussion on the
exiting BDI-based agent-oriented programming
languages (BDI stands for Beliefs, Desires, and
Intentions). These programming languages are
motivated by the BDI logics (Rao, 1996, Rao et
al., 1991, Cohen et al., 1990) that are designed to
specify agent behavior. The BDI-based program-
ming languages provide dedicated programming
constructs to implement individual agents in
terms of (cognitive) concepts such as beliefs,
desires and intentions. As we will see later in this
chapter, these (cognitive) concepts can be used to
implement individual agents that can decide to
act in order to achieve their objectives. Then, a
general description of a BDI-based agent-oriented
programming language called 2APL (A Practical
Agent Programming Language) is presented and
some of its characterizing features are discussed.
Subsequently, the complete syntax of 2APL is
given and the intuitive meaning of its ingredients

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modular-rule-based-promgramming-2apl/35853

Related Content

An Example-Based Generator of XSLT Programs
José Paulo Lealand Ricardo Queirós (2013). Innovations in XML Applications and Metadata Management:

Advancing Technologies (pp. 1-20).

www.irma-international.org/chapter/example-based-generator-xslt-programs/73170

Preservation of Data Warehouses: Extending the SIARD System with DWXML Language and

Tools
Carlos Aldeias, Gabriel Davidand Cristina Ribeiro (2013). Innovations in XML Applications and Metadata

Management: Advancing Technologies (pp. 136-159).

www.irma-international.org/chapter/preservation-data-warehouses/73177

GuessXQ: A Query-by-Example Approach for XML Querying
Daniela Morais Fonte, Daniela da Cruz, Pedro Rangel Henriquesand Alda Lopes Gancarski (2013).

Innovations in XML Applications and Metadata Management: Advancing Technologies (pp. 57-76).

www.irma-international.org/chapter/guessxq-query-example-approach-xml/73173

Data Modeling and UML
Devang Shahand Sandra Slaughter (2001). Unified Modeling Language: Systems Analysis, Design and

Development Issues (pp. 43-60).

www.irma-international.org/chapter/data-modeling-uml/30570

Agile Development of Rule Systems
Joachim Baumeister, Dietmar Seipeland Frank Puppe (2009). Handbook of Research on Emerging Rule-

Based Languages and Technologies: Open Solutions and Approaches (pp. 253-272).

www.irma-international.org/chapter/agile-development-rule-systems/35862

http://www.igi-global.com/chapter/modular-rule-based-promgramming-2apl/35853
http://www.irma-international.org/chapter/example-based-generator-xslt-programs/73170
http://www.irma-international.org/chapter/preservation-data-warehouses/73177
http://www.irma-international.org/chapter/guessxq-query-example-approach-xml/73173
http://www.irma-international.org/chapter/data-modeling-uml/30570
http://www.irma-international.org/chapter/agile-development-rule-systems/35862

