302

Chapter Xlll
The Debugging of Rule Bases

Valentin Zacharias
Forschungszentrum Informatik (FZI), Germany

ABSTRACT

This chapter presents an overview of the issues affecting and the tools used for the debugging of rule
bases. It describes the challenges in debugging rules, presents a classification of the debugging methods
developed in academia and the tools currently used in practice. This chapter explains the main debug-

ging paradigms for rule based systems: Procedural Debugging, Explanations, Why-Not Explanations,

Algorithmic Debugging, Explorative Debugging, Automatic Theory Revision and Automatic Knowledge

Refinement.

INTRODUCTION

The creation of rule bases, like the creation of
any software system, is an error prone process.
In order for a rule base to function satisfactory,
(most of) the errors have to be found and need to
be corrected. The most common way to find errors
is by testing the rule base, discovering bugs in
the way these tests are processed and then to find
and correct the faults causing them - debugging.
The debugging process is an important part of
any non-trivial manual rule base development,

indeed, a recent survey of 50 developers of rule
based systems found that the difficulty of debug-
ging was the most important issue hindering a
rule base’s development.

This bigrole and difficulty of debugging stands
in marked contrast to the often professed believe
thatrule languages are a simpler and more natural
way to build computer systems - implying a lesser
importance and difficulty of debugging. Thisidea
of rule languages as a simpler way to program
rests on three observations:

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



The Debugging of Rule Bases

. Rule languages are (mostly) declarative
languages that free the developer from wor-
rying about how something is computed.
This should decrease the complexity for the
developer.

. The If-Then structure of rules resembles the
way humans naturally communicate a large
part of knowledge.

. The basic structure of a rule is very simple
and easy to understand.

However, in particular in relation to debug-
ging, this promise of simplicity remains elusive.
The same survey mentioned above found that a
large majority of developers of rule based systems
felt that it was easier to debug a conventional
(object oriented or procedural) program than a
rule base.

In a study of three rule base development
processes (Zacharias 2008b) we identified six
reasons for this apparent mismatch between the
promise of simplicity and the difficulty of rule
base development; reasons that explain why the

simple and well understood rules are nevertheless
hard to develop and to debug.

. The One Rule Fallacy: Because one rule is
relatively simple and because the interaction
between rules is handled automatically by
the inference engine, itis often assumed that
arulebase as awhole is automatically simple
to create. However, the inference engine
obviously combines the rules only based on
how the user has specified the rules; and it is
here - in the creation of rules in a way that
they can work together - that most errors
get made. Examples for errors affecting the
interaction of rules are the use of different
attributes to represent the same thing or two
rules being based on incompatible notions of
a concept. Hence a part of the gap between
the expected simplicity of rule base creation
and the reality can be explained by naive
assumptions about rule base creation. Rule
based systems hold the promise to allow the
automatic recombination of rules to tackle

Figure 1. Issues Hindering the Development of Rule Based Systems - based on the answers of 76 develop-
ers of rule based systems. The participants of an online survey were asked to classify each of the issues

whether it was ‘Not an Issue’, an ‘Annoyance’or whether it ‘Hindered Development’. The votes for ‘Not
an Issue ‘were multiplied by zero, those for ‘Annoyance’by one and those for ‘Hindered Development’
by two, the sum of all votes for an issue then determined its ranking in this list (Zacharias 2008a).

mst Important Issues in the Developmenm

N

was difficult

o U AW

languages

what was needed

Rule Bases

1. Debugging was difficult
. Determining the completeness of the rule base

. Supporting tools missing, unsuited or immature
. Editing of rules was hard

. Determining the test coverage was difficult

. Developers had little experience with rule

7. Rule expressivity - could not (easily) represent
8. Maintenance - keeping the rule base up to date

9. Understanding the rule base was difficult
10. Runtime performance - rule base too slow

11. Organizing collaboration between the developers
was difficult

303



22 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/debugging-rule-bases/35864

Related Content

On the Co-Evolution of SSADM and the UML
Richard J. Botting (2005). Software Evolution with UML and XML (pp. 134-151).
www.irma-international.org/chapter/evolution-ssadm-uml|/29612

Use of UML Stereotypes in Business Models
Daniel Brandon Jr. (2003). UML and the Unified Process (pp. 262-272).
www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546

Labeling XML Documents

Jiaheng Lu, Liang Xu, Tok Wang Lingand Changgqing Li (2010). Advanced Applications and Structures in
XML Processing: Label Streams, Semantics Utilization and Data Query Technologies (pp. 125-142).
www.irma-international.org/chapter/labeling-xml-documents/41502

Modeling Temporal Information With JSON

Zhangbing Huand Li Yan (2019). Emerging Technologies and Applications in Data Processing and
Management (pp. 134-153).
www.irma-international.org/chapter/modeling-temporal-information-with-json/230687

Introducing Non-functional Requirements in UML

Guadalupe Salazar-Zarate, Pere Botellaand Ajantha Dahanayake (2003). UML and the Unified Process
(pp. 116-128).

www.irma-international.org/chapter/introducing-non-functional-requirements-uml/30540



http://www.igi-global.com/chapter/debugging-rule-bases/35864
http://www.irma-international.org/chapter/evolution-ssadm-uml/29612
http://www.irma-international.org/chapter/use-uml-stereotypes-business-models/30546
http://www.irma-international.org/chapter/labeling-xml-documents/41502
http://www.irma-international.org/chapter/modeling-temporal-information-with-json/230687
http://www.irma-international.org/chapter/introducing-non-functional-requirements-uml/30540

