
448

Chapter XIX
Distributed Business Rules

within Service-Centric Systems
Florian Rosenberg

Technical University Vienna, Austria

Anton Michlmayr
Technical University Vienna, Austria

Christoph Nagl
Technical University Vienna, Austria

Schahram Dustdar
Technical University Vienna, Austria

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Business rules enable a clear separation of concerns between the core business knowledge and the
underlying application code. Service-oriented Computing, on the other side, enables flexible software
systems and provides support for business processes based on software services with well-defined in-
terface, descriptions and communication protocols. Yet, the alignment of software services and business
rules has not been addressed in literature. In this chapter we present the ViDRE system that bridges the
gap between these two paradigms by exposing business rules as Web services. In contrast to existing rule
engines, our approach supports distributed rule execution using meta-rules which includes automatic
transformation of rules on both client- and server-side.

 449

Distributed Business Rules within Service-Centric Systems

IntroductIon

The design and development of adaptive busi-
ness applications is a challenging task based on
the fact that software applications are increas-
ingly distributed and the requirements change
frequently. Such changes involve a multitude of
aspects, ranging from changes in the core busi-
ness logic to changes in the external interfaces
to other subsystems or even business partners.
Such changes always imply costs and risks that
come along while adapting a software system. It
is a common goal to keep these costs minimal,
therefore, two rapidly emerging trends receive a
lot of attention in enterprise computing, namely
service-oriented architecture (SOA) – or service-
oriented computing (SOC) as a research area
in general (Papazoglou, Traverso, Dustdar, &
Leymann, 2007) – and business rules. SOA is
an architectural paradigm that enables more flex-
ible software systems and business processes by
exposing some functionality as a dedicated soft-
ware service. Such a service is described with a
well-defined, document-centric interface based on
well-known interface descriptions as for example
the Web services technology using WSDL and
SOAP (Weerawarana, Curbera, Leymann, Storey,
& Ferguson, 2005). These services are typically
distributed and can then be used to orchestrate
different services in a business process or to deliver
higher-level functionality in composed services
(Dustdar & Schreiner, 2005).

Despite all advantages of the SOC paradigm,
it does not elaborate on the internals of a service,
i.e., how a service is implemented, its technology
or paradigms for doing it. In this regard, business
rules provide an elegant means to express complex
business logic in terms of rules (for example “if-
then-else” style production rules) and facts that can
be effectively executed by a rule engine. A rule
engine is a software component that is capable of
executing such rules that are expressed in a given
syntax. In the last years, various rule languages
and engines have emerged, such as RuleML (The

Rule Markup Initiative, 2001), JBoss Drools
(JBoss, 2008), ILOG Rules (ILOG, 2008) or Prova
(Kozlenkov, Paschke, & Schroeder, 2008). A main
drawback of current rule engine implementations
is the lack of alignment with service-oriented
computing principles, that would allow an easier
integration in existing applications by exposing
rules as services, so-called rule services, and
facilitate the creation of decision services, that
is, a service that is implemented as a rule service
with a special semantics of returning either true
of false (the outcome of a decision). For example,
consider a decision service for calculating insur-
ance claims that accepts a claim as input and
decides whether it is approved or denied based
on complex calculations and rules.

The ViDRE (Vienna Distributed Rule Engine)
project introduced in (Nagl, Rosenberg, & Dust-
dar, 2006) addresses some existing shortcomings
of existing business rule solutions for the use
within enterprise software systems that hamper
an alignment and integration with the principles
of SOAs. One of the main problems is the central-
ized way in which rules are managed in current
business rules management systems (BRMS).
Typically, the rules are stored in a central rule
base, which poses some challenges when dealing
with distributed services that need to access them,
especially the increasing network communica-
tion overhead. Therefore, we advocate the use
of ViDRE rule service providers (VSP), i.e., a
rule engine and its set of rules that are needed to
execute a dedicated functionality (for example
handling an insurance claim). A VSP enables the
use of business rules technology in distributed
environments by allowing a VSP to use different
rule engines that perform the rules execution. This
is achieved by a plug-in mechanism that uses the
Java Rule Engine API, as developed by the JSR 94
(Java Specification Request) to unify the access
to various rule engines (JSR 94, 2004).

Another important issue when using rules
technologies is the lack of a standardized rule
representation language. When using dedicated

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/distributed-business-rules-within-service/35870

Related Content

Deriving Safety-Related Scenarios to Support Architecture Evaluation
Dingding Lu, Robyn R. Lutzand Carl K. Chang (2005). Software Evolution with UML and XML (pp. 31-54).

www.irma-international.org/chapter/deriving-safety-related-scenarios-support/29609

Sharing Ontologies and Rules Using Model Transformations
Milan Milanovic, Dragan Djuric, Dragan Gasevicand Vladan Devedzic (2009). Handbook of Research on

Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (pp. 471-492).

www.irma-international.org/chapter/sharing-ontologies-rules-using-model/35871

GuessXQ: A Query-by-Example Approach for XML Querying
Daniela Morais Fonte, Daniela da Cruz, Pedro Rangel Henriquesand Alda Lopes Gancarski (2013).

Innovations in XML Applications and Metadata Management: Advancing Technologies (pp. 57-76).

www.irma-international.org/chapter/guessxq-query-example-approach-xml/73173

Rational Unified Process and Unified Modeling Language - A GOMS Analysis
Keng Siau (2001). Unified Modeling Language: Systems Analysis, Design and Development Issues (pp.

107-116).

www.irma-international.org/chapter/rational-unified-process-unified-modeling/30574

Developing Software Testing Ontology in UML for a Software Growth Environment of Web-

Based Applications
Hong Zhuand Qingning Huo (2005). Software Evolution with UML and XML (pp. 263-295).

www.irma-international.org/chapter/developing-software-testing-ontology-uml/29616

http://www.igi-global.com/chapter/distributed-business-rules-within-service/35870
http://www.irma-international.org/chapter/deriving-safety-related-scenarios-support/29609
http://www.irma-international.org/chapter/sharing-ontologies-rules-using-model/35871
http://www.irma-international.org/chapter/guessxq-query-example-approach-xml/73173
http://www.irma-international.org/chapter/rational-unified-process-unified-modeling/30574
http://www.irma-international.org/chapter/developing-software-testing-ontology-uml/29616

