
245

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Engineering Embedded Software
From Application Modeling

to Software Synthesis

Ronaldo Ferreira
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Lisane Brisolara
Universidade Federal de Pelotas (UFPEL), Brazil

Julio C.B. Mattos
Universidade Federal de Pelotas (UFPEL), Brazil

Emilena Spech
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Erika Cota
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Luigi Carro
Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

abstraCt

Since 1965, with Moore’s law statement, industry is continually aggregating complex services into their
products, enhancing people’s life quality with decreasing prices. Despite the advances towards hard-
ware integration, current electronic products are relying even more on software to offer distinguished
functionalities to users. Hence, the embedded system industry is facing a paradigm shift from its old
fashioned hardware driven development to a strong software based one, exposing to the embedded sys-
tems domain unforeseen software design challenges. Indeed, this domain must devise its own and very
specialized software engineering techniques, in order to achieve sustainable market growth with quality
in the scheduled time. Embedded software is distinct from the standard one, fundamentally in the sense
that its development is driven by physical properties such as memory footprint and energy consumption.
Furthermore, embedded systems are developed within a very tight time-to-market window, pushing design
and	development	practices	to	their	limit.	In	this	chapter,	we	discuss	the	use	of	software	specifications	
at higher abstraction levels and the need to provide tools for software automation, because reliability

DOI: 10.4018/978-1-60566-750-8.ch010

246

Engineering Embedded Software

introduCtion

For a long time now, personal and server computers
amount to less than 2% of the processor market,
where standard software executes on (Turley,
2002). Most of the developed software runs on
the remaining 98% of the processors available
in the market. The embedded system domain is
driven by reliability, cost, and time-to-market
factors (Graaf, Lormans, & Toetenel, 2003). It
usually has hard constraints regarding perfor-
mance, memory, and power consumption, among
other physical properties. Embedded systems are
also often used in life-critical situations, where
reliability and safety are more important criteria
than pure performance (Edwards, Lavagno, Lee,
& Sangiovanni-Vincentelli, 1997; Koopman,
2007).

Embedded software has always been associated
to a low-level, relatively simple code responsible
for a few specific tasks, such as hardware con-
figuration and device drivers. However, such a
view is no longer a reality. In currently developed
applications, software is advancing to constitute
the main part of the system, and in many cases
software solutions are preferred to hardware ones,
because software is more flexible, easier to update,
and can be reused (Graaf, Lormans, & Toetenel,
2003). In addition, industry statistics from (Venture
Development Corporation, 2006) reveal that the
amount of lines of embedded code is growing at
about 26% yearly. Although this data cannot be
considered alone, it is an important indicative
of software complexity (Kan, 2002). Due to this
growing complexity and short time-to-market
window, statistics from (CMP Media, 2006)
show that more than one half of current embed-

ded design projects are running behind schedule.
This delay is mostly caused by the software
productivity and testing gap, where hardware is
almost being considered a commodity product,
since the introduction of platform-based design
(Sangiovanni-Vincentelli & Martin, 2001).

To cope with the increasing complexity, de-
velopers have been looking for higher levels of
abstraction during system specification. Abstrac-
tion makes the development easier, and the final
program becomes more readable and less hard to
maintain. This fact is known by software engineers
since the 1960’s, when the software crisis was
first discussed in the NATO conference (Naur &
Randell, 1969), and important advances on the
software development methods and techniques
have been proposed since then. Such advances
help tackle the complexity of a million-line code
with the use of software languages, management
approaches, testing tools, and modeling methods
(Osterweil, 2007).

There are several well-established software
development processes, such as the Unified
Process and Agile Development Methods (Cock-
burn, 2001), whose usage is now supported by
the standard system modeling language UML
(OMG, 1997) and by CASE (Computer Aided
Software Engineering) tools (Pressman, 2004).
Today, one can think of software product lines,
producing code and delivering software services
in a rate that could never be imagined in 1968
during the NATO conference. Furthermore, soft-
ware companies may now rely on certifications
over the development process as a way to achieve
software quality. This is the goal, for instance, of
the Capability Maturity Model (CMM) and the
Capability Maturity Model Integration (CMMI)

and safety are important criteria present in several embedded applications, as well as time-to-market.
This	chapter	discusses	the	design	flow	for	embedded	software,	from	its	modeling	to	its	deployment	in	
the embedded platform.

24 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/engineering-embedded-software/36345

Related Content

A Lightweight Measurement of Software Security Skills, Usage and Training Needs in Agile

Teams
Tosin Daniel Oyetoyan, Martin Gilje Jaatunand Daniela Soares Cruzes (2017). International Journal of

Secure Software Engineering (pp. 1-27).

www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-

agile-teams/179641

Understanding the Role of Knowledge Management in Software Development: A Case Study in

Very Small Companies
Rory V. O'Connorand Shuib Basri (2014). International Journal of Systems and Service-Oriented

Engineering (pp. 39-52).

www.irma-international.org/article/understanding-the-role-of-knowledge-management-in-software-development/104653

A Test-Driven Approach for Metamodel Development
A. Cicchetti, D. Di Ruscio, A. Pierantonioand D.S. Kolovos (2012). Emerging Technologies for the Evolution

and Maintenance of Software Models (pp. 319-342).

www.irma-international.org/chapter/test-driven-approach-metamodel-development/60726

Eliciting Policy Requirements for Critical National Infrastructure Using the IRIS Framework
Shamal Failyand Ivan Fléchais (2013). Developing and Evaluating Security-Aware Software Systems (pp.

36-55).

www.irma-international.org/chapter/eliciting-policy-requirements-critical-national/72197

Web Application Vulnerabilities and Their Countermeasures
Kannan Balasubramanian (2018). Application Development and Design: Concepts, Methodologies, Tools,

and Applications (pp. 1312-1342).

www.irma-international.org/chapter/web-application-vulnerabilities-and-their-countermeasures/188258

http://www.igi-global.com/chapter/engineering-embedded-software/36345
http://www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-agile-teams/179641
http://www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-agile-teams/179641
http://www.irma-international.org/article/understanding-the-role-of-knowledge-management-in-software-development/104653
http://www.irma-international.org/chapter/test-driven-approach-metamodel-development/60726
http://www.irma-international.org/chapter/eliciting-policy-requirements-critical-national/72197
http://www.irma-international.org/chapter/web-application-vulnerabilities-and-their-countermeasures/188258

