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INTRODUCTION

Automated Planning (AP) is the branch of Artificial Intelligence (AI) that studies the computational 
synthesis of sets of actions to carry out a given task (Ghallab et al., 2004). AP appeared in the late ‘50s 
from converging studies into state-space search, theorem proving and control theory to solve the practical 
needs of robotics. The STanford Institute Problem Solver STRIPS (Fikes & Nilsson, 1971), developed 
to be the planning component for controlling the autonomous robot Shakey (Nilsson, 1984), perfectly 
illustrates the interaction of these influences. Since the Shakey’s days up to now, AP has created ef-
ficient planners and well accepted standards for representing and solving the planning tasks. In the last 
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years, AP systems have been successfully applied for controlling underwater vehicles (McGann et al., 
2008), for the management of fire extinctions (Castillo et al., 2006), for the planning of space missions 
(Bresina et al., 2005), etc . But despite of all these successful examples, the application of AP systems 
to real-world problems is still complicated, mainly due to the following two factors. First, the search 
for a solution plan in AP is a PSpace-complete1 problem (Bylander, 1991). One can easily find planning 
problems that overwhelm the capacities of the off-the-shelf planners. Second, AI planners need to be 
fed with accurate description of the planning tasks. These descriptions consist of a model of the actions 
that can be carried out in the environment together with a specification of the state of the environment 
and the goals to achieve. Knowing in advance this information is unfeasible in most of the real-world 
problems.

The following sections describe different approaches for applying Machine Learning (ML) to assist 
AP in order to overcome these two problems. These approaches learn either heuristics (also called control 
knowledge) for handling the search complexity or action models. The chapter is organized as follows. The 
first section explains the basic concepts of AP. Second section describes the common issues about using 
ML for AP. Third section reviews the last techniques for automatically learning AP control knowledge. 
Fourth section reviews the last advances for the learning of AP action models. The fifth section depicts 
the current challenges of ML for AP. And finally, section sixth discuses some conclusions.

bACKGROUND

An AP task is defined by two elements: (1) a set of actions that represents the state-transition function 
of the world (the planning domain) and (2), a set of facts that represent the initial state together with the 
goals of the AP task (the planning problem). These two elements are typically represented in languages 
coming from the first-order logic. In the early days of AP, STRIPS was the most popular representation 
language. In 1998 the Planning Domain Definition Language (PDDL) was developed for the first In-
ternational Planning Competition (IPC). Since that date, PDDL has become the standard representation 
language for the AP community. According to the PDDL specification (Fox & Long, 2003), an action 
in the planning domain is represented by: (1) the action preconditions, a list of predicates indicating 
the facts that must be true so the action becomes applicable and (2) the action effects, which is a list of 
predicates indicating the changes in the state after the action application. Like STRIPS, PDDL follows 
the closed world assumption to solve the frame problem. Regarding this assumption, what is not cur-
rently known to be true, is false.

Before the mid ‘90s, automated planners could only synthesize plans of no more than 10 actions in 
an acceptable amount of time. During those years, planners strongly depended on speedup techniques, 
such as learning control knowledge, for solving interesting AP problems. In the late 90’s, a significant 
scale-up in planning took place due to the appearance of the reachability planning graph (Blum & Furst, 
1995) and the development of powerful domain independent heuristics (Hoffman & Nebel, 2001; Bonet 
& Geffner, 2001). Planners using these advances can often synthesize 100-action plans just in seconds. 
So, at the present time, there is not such dependence on ML for solving AP problems. However, there is 
a renewed interest in learning for AP motivated by two factors: (1) IPC-2000 showed that knowledge-
based planners scale up dramatically better than domain-independent planners. The development of ML 
techniques that automatically define the kind of knowledge that humans put in these planners would 
bring great advances to the field. With this aim, the IPC-2008 introduced a specific track for learning-
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