
1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch001

Chapter 1

Is Modeling a Treatment 
for the Weakness of 

Software Engineering?
Janis Osis

Riga Technical University, Latvia

Erika Asnina
Riga Technical University, Latvia

introduction

Software developers’ community understands and 
forcedly accepts that software development in 
its current state is rather art than an engineering 
process. This means that qualitative software is 
a piece-work or a craftwork. Such an item usu-

ally is expensive, and cannot be stock-produced. 
However, in the modern world software users want 
to see and to use a qualitative and relatively cheap 
product. This means that software development 
must become software engineering. The word 
“engineering” intends a theory approved, com-
pletely realized and reused many times in practice 
that gives a qualitative and relatively inexpensive 
end product in accurately predictable timeframes.

ABstrAct

The authors share with some other experts the opinion that the way software is built is primitive. 
Therefore, this chapter discusses a role of modeling as a treatment for software engineering. The role of 
modeling became more important after appearance of principles proposed by Model Driven Architecture 
(MDA). The main advantage of MDA is architectural separation of concerns that showed necessity of 
modeling and opened the way to software development to become engineering. However, the weakness 
is that this principle does not demonstrate its whole potential power in practice, because of a lack of 
mathematical formalism (or accuracy) in the very initial steps of software development. Therefore, the 
question about the sufficiency of modeling in software development is still open. The authors believe that 
software development in general, and modeling in particular, based on mathematical formalism in all 
its stages together with the implemented principle of architectural separation of concerns can become 
Software Engineering in its real sense. The authors introduce such mathematical formalism by means 
of topological modeling of system functioning.



2

Is Modeling a Treatment for the Weakness of Software Engineering?

Software development’s way to software 
engineering is quite long. Things that make this 
way long are very different. From one viewpoint, 
software development lacks commonly accepted 
theoretical foundations. From another viewpoint, 
software developers do not want to use “hard” 
theory (especially mathematical) because in order 
to win on the market they must provide operating 
software as fast as possible and even faster, but 
a lack of theory just slower getting an operating 
product. From the third viewpoint, clients do not 
want to pay a powerful lot of money for a prod-
uct that, first, exists only as a textual document, 
second, includes “intellectual” work that is hard 
to measure and to evaluate, and third, usually it 
is not the same as clients wanted. Clients cannot 
check how work proceeds, since they cannot see 
the product at whole before integration of its parts 
and cannot evaluate (or even understand) the size 
of introduced efforts.

The content of this chapter is our vision of how 
to shorten this long way. First, we discuss effec-
tiveness and quality of software engineering, and 
then differences between traditional engineering 
disciplines and software engineering. Next, we 
consider a modeling process and discuss benefits 
and issues, which could and could not be solved 
by modeling. At the end, we discuss our vision 
on what must be done in order to get really revo-
lutionary improvement of software development.

BAckground

effectiveness and Quality 
of software engineering

First, let us discuss effectiveness and quality of 
software engineering. Our discussion is grounded 
on the very important results of the research per-
formed by Capers Jones and presented in (Jones, 
2009). Currently, Capers Jones is a president 
of Capers Jones & Associates LLC. He is also 
a founder and a former chairman of Software 
Productivity Research LLC (SPR). Jones and his 

colleagues from SPR have collected historical data 
(since 1977 till 2007) from hundreds of corpora-
tions and more than 30 government organizations. 
This historical data is a key source for judging the 
effectiveness of software process improvement 
methods. This data is also widely cited in software 
litigation in cases where quality, productivity, and 
schedules are parts of the proceedings. Jones also 
frequently works as an expert witness in software 
litigation. In brief, Capers Jones is an authority 
in software engineering.

The main result obtained during analysis of this 
historical data can be expressed in one sentence - 
“The way software is built remains surprisingly 
primitive” (Jones, 2009, p. 1). This statement is 
based on the following data:

• Budget and schedule overruns. Even in 
2008 majority of software applications 
are cancelled, overrun their budgets and 
schedules, and often have hazardously bad 
quality levels when released. As time pass-
es, the global percentage of programmers 
performing maintenance on aging software 
has steadily risen, until it has become the 
dominant activity of the software world.

• Product and process innovations. External 
product innovations (new or improved 
products) and internal process innovations 
(new or improved methods for reducing 
development resources) are at differing 
levels of sophistication. Even in 2008 very 
sophisticated and complex pieces of soft-
ware are still constructed by manual meth-
ods with extraordinary labor content (jobs 
from the United States to India, China, 
etc.) and very distressing quality levels. 
Yet software quality and productivity lev-
els in 2007 are hardly different from 1977.

• Positive and Negative Innovations. Capers 
Jones and his colleagues have introduced 
two interesting terms, namely, positive in-
novations and negative innovations (Jones, 
2009). Their meaning is explained on the 
example of agile techniques. The Agile ap-



 

 

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modeling-treatment-weakness-software-

engineering/49151

Related Content

Reduction of Defect Misclassification of Electronic Board Using Multiple SVM Classifiers
Takuya Nakagawa, Yuji Iwahoriand M. K. Bhuyan (2014). International Journal of Software Innovation (pp.

25-36).

www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-

classifiers/111448

Model-Driven Data Warehouse Automation: A Dependent-Concept Learning Approach
Moez Essaidi, Aomar Osmaniand Céline Rouveirol (2014). Advances and Applications in Model-Driven

Engineering (pp. 240-267).

www.irma-international.org/chapter/model-driven-data-warehouse-automation/78618

Multi-Agent Reconfigurable Embedded Systems: From Modelling to Implementation
Mohamed Khalgui (2011). Reconfigurable Embedded Control Systems: Applications for Flexibility and

Agility  (pp. 1-30).

www.irma-international.org/chapter/multi-agent-reconfigurable-embedded-systems/50423

Disciplined Teams vs. Agile Teams: Differences and Similarities in Software Development
Antonio Alexandre Moura Costa, Felipe Barbosa Araújo Ramos, Dalton Cézane Gomes Valadares, Danyllo

Wagner Albuquerque, Emanuel Dantas Filho, Alexandre Braga Gomes, Mirko Barbosa Perkusichand

Hyggo Oliveira de Almeida (2022). Research Anthology on Agile Software, Software Development, and

Testing (pp. 40-55).

www.irma-international.org/chapter/disciplined-teams-vs-agile-teams/294457

Stabilization of a Class of Fractional-Order Chaotic Systems via Direct Adaptive Fuzzy Optimal

Sliding Mode Control
Bachir Bourouba (2018). Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order

Systems (pp. 289-304).

www.irma-international.org/chapter/stabilization-of-a-class-of-fractional-order-chaotic-systems-via-direct-adaptive-fuzzy-

optimal-sliding-mode-control/204804

http://www.igi-global.com/chapter/modeling-treatment-weakness-software-engineering/49151
http://www.igi-global.com/chapter/modeling-treatment-weakness-software-engineering/49151
http://www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-classifiers/111448
http://www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-classifiers/111448
http://www.irma-international.org/chapter/model-driven-data-warehouse-automation/78618
http://www.irma-international.org/chapter/multi-agent-reconfigurable-embedded-systems/50423
http://www.irma-international.org/chapter/disciplined-teams-vs-agile-teams/294457
http://www.irma-international.org/chapter/stabilization-of-a-class-of-fractional-order-chaotic-systems-via-direct-adaptive-fuzzy-optimal-sliding-mode-control/204804
http://www.irma-international.org/chapter/stabilization-of-a-class-of-fractional-order-chaotic-systems-via-direct-adaptive-fuzzy-optimal-sliding-mode-control/204804

