136

Chapter 7

Model-Driven Automated Error
Recovery in Cloud Computing

Yu Sun
University of Alabama at Birmingham, USA

Jules White
Virginia Tech, USA

Jeff Gray
University of Alabama, USA

Aniruddha Gokhale
Vanderbilt University, USA

ABSTRACT

Cloud computing provides a platform that enables users to utilize computation, storage, and other

computing resources on-demand. As the number of running nodes in the cloud increases, the potential

points of failure and the complexity of recovering from error states grows correspondingly. Using the

traditional cloud administrative interface to manually detect and recover from errors is tedious, time-

consuming, and error prone. This chapter presents an innovative approach to automate cloud error

detection and recovery based on a run-time model that monitors and manages the running nodes in a

cloud. When administrators identify and correct errors in the model, an inference engine is used to identify
the specific state pattern in the model to which they were reacting, and to record their recovery actions.
An error detection and recovery pattern can be generated from the inference and applied automatically

whenever the same error occurs again.

INTRODUCTION

With the increasing complexity of software and
systems, domain analysis and modeling are becom-
ing more important for software development and
system applications. Applying domain-specific

DOI: 10.4018/978-1-61692-874-2.ch007

modeling languages and transformation engines
is an effective approach to address platform
complexity and the inability of third-generation
languages to express domain concepts clearly
(Schmidt, 2006). Building correct models for a
specific domain can often simplify many complex
tasks, particularly for distributed applications

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Model-Driven Automated Error Recovery in Cloud Computing

Figure 1. Two options to control application instances

ApplicationInstances in Cloud

(a) Command Line Control Interface

based on cloud computing (Hayes, 2008) that
offer several opportunities for customization and
variability.

Cloud computing shifts the computation from
local, individual devices to distributed, virtual, and
scalable resources, thereby enabling end-users
to utilize the computation, storage, and other
application resources (which forms the “cloud”)
on-demand (Hayes, 2008). Amazon EC2 (Elastic
Compute Cloud) (http://aws.amazon.com/ec2/,
2009) is an example cloud computing platform
that allows users to deploy different customized
applications in the cloud. A user can create, ex-
ecute, and terminate the application instances as
needed, and pay for the cost of time and storage
that the active instances use based on a utility cost
model (Rappa, 2004).

In the cloud computing paradigm, the large
number of running nodes increases the number
of potential points of failure and the complexity
ofrecovering from error states. For instance, if an
application terminates unexpectedly, it is neces-
sary to search quickly through the large number
of running nodes to locate the problematic nodes
and states. Moreover, to avoid costly downtime,
administrators must rapidly remedy the problem-
atic node states to avoid further spread of errors.

Just like standard enterprise applications,
cloud computing applications can suffer from
a wide range of problems stemming from hard-
ware failure to operator error (Oppenheimer et
al., 2003). For example, Amazon EC2 provides

(b) Runtime Model

limited guarantees about availability or reliability
of hardware or virtual machine (VM) instances.
Operators must be prepared to re-launch VM in-
stances when failures occur, transfer critical data
to newly provisioned VM images, start critical
services on new VM instances, join new nodes to
virtual LANSs or security contexts, or update load
balancers and elastic IP addresses to reference
newly provisioned infrastructure.

Although Amazon EC2 provides auser-friend-
ly and simple interface to manage and control the
application instances (Figure 1a), administrators
must still be experienced with the administrative
commands, the configuration of each application,
as well as some domain knowledge about each
running instance. Administrators must therefore be
highly trained to effectively and efficiently handle
error detection and error recovery. The complexity
of managing a large cloud of nodes can increase
maintenance costs, especially when personnel are
replaced due to turnover or downsizing.

Even with experienced administrators, the
process of error recovery involves the following
challenges:

. It is hard to locate errors accurately with
a large number of running application
instances.

e It may take too much time to detect and
locate an error, causing a long period
of service termination or further error
propagation.

137



18 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/model-driven-automated-error-recovery/49157

Related Content

Design Space Exploration for Implementing a Software-Based Speculative Memory System
Kohei Fujisawa, Atsushi Nunome, Kiyoshi Shibayamaand Hiroaki Hirata (2018). International Journal of
Software Innovation (pp. 37-49).
www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-
system/201484

Model-Driven Development of Multi-Core Embedded Software
Shang-Wei Lin, Chao-Sheng Lin, Chun-Hsien Lu, Yean-Ru Chenand Pao-Ann Hsiung (2011). Modern
Software Engineering Concepts and Practices: Advanced Approaches (pp. 357-379).

www.irma-international.org/chapter/model-driven-development-multi-core/51980

Efficient Multirate Filtering
Ljiljlana D. Milicand Miroslav D. Lutovac (2002). Multirate Systems: Design and Applications (pp. 105-142).

www.irma-international.org/chapter/efficient-multirate-filtering/27225

Choosing Basic Architectural Alternatives

Gerhard Chroustand Erwin Schoitsch (2009). Designing Software-Intensive Systems: Methods and
Principles (pp. 161-221).
www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237

OntoArch Reliability-Aware Software Architecture Design and Experience

Jiehan Zhou, Eila Ovaska, Antti Evestiand Anne Immonen (2011). Modern Software Engineering Concepts
and Practices: Advanced Approaches (pp. 48-74).
www.irma-international.org/chapter/ontoarch-reliability-aware-software-architecture/51968



http://www.igi-global.com/chapter/model-driven-automated-error-recovery/49157
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/chapter/model-driven-development-multi-core/51980
http://www.irma-international.org/chapter/efficient-multirate-filtering/27225
http://www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237
http://www.irma-international.org/chapter/ontoarch-reliability-aware-software-architecture/51968

