
136

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch007

Chapter 7

Model-Driven Automated Error 
Recovery in Cloud Computing

Yu Sun
University of Alabama at Birmingham, USA

Jules White
Virginia Tech, USA

Jeff Gray
University of Alabama, USA

Aniruddha Gokhale
Vanderbilt University, USA

introduction

With the increasing complexity of software and 
systems, domain analysis and modeling are becom-
ing more important for software development and 
system applications. Applying domain-specific 

modeling languages and transformation engines 
is an effective approach to address platform 
complexity and the inability of third-generation 
languages to express domain concepts clearly 
(Schmidt, 2006). Building correct models for a 
specific domain can often simplify many complex 
tasks, particularly for distributed applications 

ABstrAct

Cloud computing provides a platform that enables users to utilize computation, storage, and other 
computing resources on-demand. As the number of running nodes in the cloud increases, the potential 
points of failure and the complexity of recovering from error states grows correspondingly. Using the 
traditional cloud administrative interface to manually detect and recover from errors is tedious, time-
consuming, and error prone. This chapter presents an innovative approach to automate cloud error 
detection and recovery based on a run-time model that monitors and manages the running nodes in a 
cloud. When administrators identify and correct errors in the model, an inference engine is used to identify 
the specific state pattern in the model to which they were reacting, and to record their recovery actions. 
An error detection and recovery pattern can be generated from the inference and applied automatically 
whenever the same error occurs again.



137

Model-Driven Automated Error Recovery in Cloud Computing

based on cloud computing (Hayes, 2008) that 
offer several opportunities for customization and 
variability.

Cloud computing shifts the computation from 
local, individual devices to distributed, virtual, and 
scalable resources, thereby enabling end-users 
to utilize the computation, storage, and other 
application resources (which forms the “cloud”) 
on-demand (Hayes, 2008). Amazon EC2 (Elastic 
Compute Cloud) (http://aws.amazon.com/ec2/, 
2009) is an example cloud computing platform 
that allows users to deploy different customized 
applications in the cloud. A user can create, ex-
ecute, and terminate the application instances as 
needed, and pay for the cost of time and storage 
that the active instances use based on a utility cost 
model (Rappa, 2004).

In the cloud computing paradigm, the large 
number of running nodes increases the number 
of potential points of failure and the complexity 
of recovering from error states. For instance, if an 
application terminates unexpectedly, it is neces-
sary to search quickly through the large number 
of running nodes to locate the problematic nodes 
and states. Moreover, to avoid costly downtime, 
administrators must rapidly remedy the problem-
atic node states to avoid further spread of errors.

Just like standard enterprise applications, 
cloud computing applications can suffer from 
a wide range of problems stemming from hard-
ware failure to operator error (Oppenheimer et 
al., 2003). For example, Amazon EC2 provides 

limited guarantees about availability or reliability 
of hardware or virtual machine (VM) instances. 
Operators must be prepared to re-launch VM in-
stances when failures occur, transfer critical data 
to newly provisioned VM images, start critical 
services on new VM instances, join new nodes to 
virtual LANs or security contexts, or update load 
balancers and elastic IP addresses to reference 
newly provisioned infrastructure.

Although Amazon EC2 provides a user-friend-
ly and simple interface to manage and control the 
application instances (Figure 1a), administrators 
must still be experienced with the administrative 
commands, the configuration of each application, 
as well as some domain knowledge about each 
running instance. Administrators must therefore be 
highly trained to effectively and efficiently handle 
error detection and error recovery. The complexity 
of managing a large cloud of nodes can increase 
maintenance costs, especially when personnel are 
replaced due to turnover or downsizing.

Even with experienced administrators, the 
process of error recovery involves the following 
challenges:

• It is hard to locate errors accurately with 
a large number of running application 
instances.

• It may take too much time to detect and 
locate an error, causing a long period 
of service termination or further error 
propagation.

Figure 1. Two options to control application instances



 

 

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-automated-error-recovery/49157

Related Content

Design Space Exploration for Implementing a Software-Based Speculative Memory System
Kohei Fujisawa, Atsushi Nunome, Kiyoshi Shibayamaand Hiroaki Hirata (2018). International Journal of

Software Innovation (pp. 37-49).

www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-

system/201484

Model-Driven Development of Multi-Core Embedded Software
Shang-Wei Lin, Chao-Sheng Lin, Chun-Hsien Lu, Yean-Ru Chenand Pao-Ann Hsiung (2011). Modern

Software Engineering Concepts and Practices: Advanced Approaches  (pp. 357-379).

www.irma-international.org/chapter/model-driven-development-multi-core/51980

Efficient Multirate Filtering
Ljiljana D. Milicand Miroslav D. Lutovac (2002). Multirate Systems: Design and Applications  (pp. 105-142).

www.irma-international.org/chapter/efficient-multirate-filtering/27225

Choosing Basic Architectural Alternatives
Gerhard Chroustand Erwin Schoitsch (2009). Designing Software-Intensive Systems: Methods and

Principles  (pp. 161-221).

www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237

OntoArch Reliability-Aware Software Architecture Design and Experience
Jiehan Zhou, Eila Ovaska, Antti Evestiand Anne Immonen (2011). Modern Software Engineering Concepts

and Practices: Advanced Approaches  (pp. 48-74).

www.irma-international.org/chapter/ontoarch-reliability-aware-software-architecture/51968

http://www.igi-global.com/chapter/model-driven-automated-error-recovery/49157
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/chapter/model-driven-development-multi-core/51980
http://www.irma-international.org/chapter/efficient-multirate-filtering/27225
http://www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237
http://www.irma-international.org/chapter/ontoarch-reliability-aware-software-architecture/51968

