
156

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch008

Chapter 8

Productivity Analysis
of the Distributed QoS

Modeling Language
Joe Hoffert

Vanderbilt University, USA

Douglas C. Schmidt
Vanderbilt University, USA

Aniruddha Gokhale
Vanderbilt University, USA

introduction

Model-driven engineering (MDE) helps address
the problems of designing, implementing, and
integrating applications (Schmidt, 2006; Hailp-
ern, 2006; Atkinson 2003; Kent, 2002). MDE is
increasingly used in domains involving modeling

software components, developing embedded soft-
ware systems, and configuring quality-of-service
(QoS) policies. Key benefits of MDE include (1)
raising the level of abstraction to alleviate acciden-
tal complexities of low-level and heterogeneous
software platforms, (2) more effectively express-
ing designer intent for concepts in a domain,
and (3) enforcing domain-specific development
constraints. Many documented benefits of MDE

ABstrAct

Model-driven engineering (MDE), in general, and Domain-Specific Modeling Languages (DSMLs),
in particular, are increasingly used to manage the complexity of developing applications in various
domains. Although many DSML benefits are qualitative (e.g., ease of use, familiarity of domain con-
cepts), there is a need to quantitatively demonstrate the benefits of DSMLs (e.g., quantify when DSMLs
provide savings in development time) to simplify comparison and evaluation. This chapter describes
how the authors conducted productivity analysis for the Distributed Quality-of-Service (QoS) Modeling
Language (DQML). Their analysis shows (1) the significant productivity gain using DQML compared
with alternative methods when configuring application entities and (2) the viability of quantitative pro-
ductivity metrics for DSMLs.

157

Productivity Analysis of the Distributed QoS Modeling Language

are qualitative, e.g., use of domain-specific enti-
ties and associations that are familiar to domain
experts, and visual programming interfaces where
developers can manipulate icons representing
domain-specific entities to simplify develop-
ment. There is a lack of documented quantitative
benefits for domain-specific modeling languages
(DSMLs), however, that show how developers
are more productive using MDE tools and how
development using DSMLs yields fewer bugs.

Conventional techniques for quantifying the
benefits of MDE in general (e.g., comparing user-
perceived usefulness of measurements for devel-
opment complexity (Abrahao and Poels, 2007,
2009)) and DSMLs in particular (e.g., comparing
elapsed development time for a domain expert
with and without the use of the DSML (Loyall,
Ye, Shapiro, Neema, Mahadevan, Abdelwahed,
Koets, & Varner, 2004)) involve labor-intensive
and time-consuming experiments. For example,
control and experimental groups of developers
may be tasked to complete a development activity
during which metrics are collected (e.g., number of
defects, time required to complete various tasks).
These metrics also often require the analysis of
domain experts, who may be unavailable in many
production systems.

Even though DSML developers are typically
responsible for showing productivity gains, they
often lack the resources to demonstrate the quan-
titative benefits of their tools. One way to address
this issue is via productivity analysis, which is a
lightweight approach to quantitatively evaluating
DSMLs that measures how productive develop-
ers are, and quantitatively exploring factors that
influence productivity (Boehm, 1987; Premraj,
Shepperd, Kitchenham, & Forselius, 2005). This
chapter applies quantitative productivity measure-
ment using a case study of the Distributed QoS
Modeling Language (DQML), which is a DSML
for designing valid QoS policy configurations and
transforming the configurations into correct-by-
construction implementations. Our productivity
analysis of DQML shows significant productivity

gains compared with common alternatives, such
as manual development using third-generation
programming languages. While this chapter
focuses on DQML, in general the productivity
gains and analysis presented are representative of
DSMLs’ ability to reduce accidental complexity
and increase reusability.

BAckground

This section presents related work in the area of
metrics for MDE and domain-specific technolo-
gies. We present work on quantitative analysis for
MDE technologies as well as metrics to support
quantitative evaluation.

Conway and Edwards (2004) focus on measur-
ing quantifiable code size improvements using
the NDL Device Language (NDL), which is a
domain-specific language applicable to device
drivers. NDL abstracts details of the device re-
sources and constructs used to describe common
device driver operations. The creators of NDL
show quantitatively that NDL reduces code size of
a semantically correct device driver by more than
50% with only a slight impact on performance.
While quantifiable code size improvements are
shown by using NDL, the type of improvement is
applicable to DSLs where a higher level language
is developed to bundle or encapsulate lower level,
tedious, and error prone development. The pro-
ductivity analysis for a DSL is easier to quantify
since common units such as lines of source code
are used. Conway and Edwards present compelling
evidence of productivity gains of NDL although
they do not encompass all the benefits of automatic
code generation found with DSMLs such as the
ease of a GUI.

Bettin (2002) measures productivity for
domain-specific modeling techniques within
the domain of object-oriented user interfaces.
Comparisons are made between (1) traditional
software development where no explicit model-
ing is performed, (2) standard Unified Modeling

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/productivity-analysis-distributed-qos-

modeling/49158

Related Content

A Model to Assist the Maintenance vs. Replacement Decision in Information Systems
O. Tolga Pusatliand Brian Regan (2014). Software Design and Development: Concepts, Methodologies,

Tools, and Applications (pp. 1461-1480).

www.irma-international.org/chapter/model-assist-maintenance-replacement-decision/77766

Exploring the Perceived End-Product Quality in Software-Developing Organizations
Jussi Kasurinen, Ossi Taipale, Jari Vanhanenand Kari Smolander (2012). International Journal of

Information System Modeling and Design (pp. 1-32).

www.irma-international.org/article/exploring-perceived-end-product-quality/65560

Requirements Prioritisation for Incremental and Iterative Development
D. Greer (2005). Requirements Engineering for Sociotechnical Systems (pp. 100-118).

www.irma-international.org/chapter/requirements-prioritisation-incremental-iterative-development/28405

Rice Paper Classification Study Based on Signal Processing and Statistical Methods in Image

Texture Analysis
Haotian Zhai, Hongbin Huang, Shaoyan Heand Weiping Liu (2014). International Journal of Software

Innovation (pp. 1-14).

www.irma-international.org/article/rice-paper-classification-study-based-on-signal-processing-and-statistical-methods-in-

image-texture-analysis/120086

Optimized and Distributed Variant Logic for Model-Driven Applications
Jon Davisand Elizabeth Chang (2015). Handbook of Research on Innovations in Systems and Software

Engineering (pp. 428-478).

www.irma-international.org/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/117936

http://www.igi-global.com/chapter/productivity-analysis-distributed-qos-modeling/49158
http://www.igi-global.com/chapter/productivity-analysis-distributed-qos-modeling/49158
http://www.irma-international.org/chapter/model-assist-maintenance-replacement-decision/77766
http://www.irma-international.org/article/exploring-perceived-end-product-quality/65560
http://www.irma-international.org/chapter/requirements-prioritisation-incremental-iterative-development/28405
http://www.irma-international.org/article/rice-paper-classification-study-based-on-signal-processing-and-statistical-methods-in-image-texture-analysis/120086
http://www.irma-international.org/article/rice-paper-classification-study-based-on-signal-processing-and-statistical-methods-in-image-texture-analysis/120086
http://www.irma-international.org/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/117936

