
177

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch009

Chapter 9

Domain-Driven Reuse of
Software Design Models1

Audris Kalnins
IMCS University of Latvia, Latvia

Michał Śmiałek
Warsaw University of Technology, Poland

Elina Kalnina
IMCS University of Latvia, Latvia

Edgars Celms
IMCS University of Latvia, Latvia

Wiktor Nowakowski
Warsaw University of Technology, Poland

Tomasz Straszak
Warsaw University of Technology, Poland

ABstrAct

This chapter presents an approach to software development where model driven development and soft-
ware reuse facilities are combined in a natural way. The basis for all of this is a semiformal requirements
language RSL. The requirements in RSL consist of use cases refined by scenarios in a simple controlled
natural language and the domain vocabulary containing the domain concepts. The chapter shows how
model transformations building a platform independent model (PIM) can be applied directly to the re-
quirements specified in RSL by domain experts. Further development of the software case (PSM, code)
is also supported by transformations, which in addition ensure a rich traceability within the software
case. The reuse support relies on a similarity based comparison of requirements for software cases. If a
similar part is found in an existing software case, a traceability link based slice of the solution can be
merged into the new case. The implementation of the approach is briefly sketched.

178

Domain-Driven Reuse of Software Design Models

introduction

Some of the most significant cornerstones for
state-of-the-art software development are model
driven development (MDD) and software reuse.
There is a lot of success in applying them sepa-
rately, but practically nothing has been done to
combine them. The proposed approach provides
a tight natural integration of both. The third
equally important cornerstone is an adequate
facility for specifying semiformal requirements
to the software system being developed. All these
three components together provide support for
“model and requirement driven reuse”. Only in
this way a complete MDD life cycle can be sup-
ported, where the use of models starts from the
“very beginning”. Reuse can also be significantly
simplified this way because requirements alone
can be used to find candidates for reuse and to
select system parts to be reused.

Our approach is based on a special Require-
ments Specification Language (RSL). This
language is semiformal in the sense that it is
close to a natural language and understandable
to non-IT specialists, but on the other hand it has
a meaning precise enough to be processed by
model transformations and reuse mechanisms.
Consequently, a true model driven development
(MDD) is possible, where the initial version of
next model in the chain is built from the previous
one by model transformations. In totality, these
models form a software case. Thus, there is an
automatic transformation supported path from
requirements to code. All these models play an
important role in the reuse process.

More precisely, requirements in RSL consist
of two related parts. The domain concepts to be
used in the requirements are described in a domain
vocabulary. This domain vocabulary serves as a
semiformal easy readable equivalent of the domain
class model. The meaning of domain elements can
be specified by means of links to corresponding
WordNet (Fellbaum, 1998) entries. The domain

model serves as the basis for the other part of
requirements – the required system behaviour
description. This description is centred on use
cases. The distinctive feature of RSL is that a
use case is refined by one or more scenarios in a
simple controlled language. Each noun within a
scenario sentence must be defined in the domain
vocabulary, thus the whole sentence gets a precise
meaning. In addition to use cases, non-functional
requirements to the system can be described by
natural language sentences, using hyperlinks to
the same vocabulary. The precise syntax of RSL is
described by a metamodel. RSL will be described
in more details in next section. Requirements
model in RSL can be treated as a Computation
Independent Model (CIM) in the classical MDA
model chain (Object Management Group, 2003).

When the software case development starts, the
requirements model is transformed into the initial
version of Platform Independent Model (PIM) in
the selected subset of UML (Object Management
Group, 2009). The static structure of this model
is generated from the domain vocabulary within
requirements. Consequently, the whole structure
of the system, especially its business logic and
data access layers, depend on this domain. Thus a
true domain driven design is supported. An initial
version of the behaviour is obtained by transfor-
mations analyzing the use case scenarios, thus
aspects of use case driven design are also present.
The precise contents of the generated PIM depend
on the selected architecture style for the software
system to be developed. Model transformation sets
supporting several architecture styles have been
developed. The obtained PIM can be manually
extended, then another transformation can be
applied to generate the initial version of PSM. A
similar step leads to initial code for the system.
More details on the transformation assisted soft-
ware case development will be given in section
“Definition of software cases”.

One more important aspect of the approach
is the strong support of traceability in the form

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/domain-driven-reuse-software-design/49159

Related Content

Atomicity and Semantic Normalization
Andy Carverand Terry Halpin (2010). International Journal of Information System Modeling and Design (pp.

23-39).

www.irma-international.org/article/atomicity-semantic-normalization/43607

Automatic Test Sequence Generation and Functional Coverage Measurement From UML

Sequence Diagrams
Nazm Umut Ekiciand Tugkan Tuglular (2023). International Journal of Information System Modeling and

Design (pp. 1-21).

www.irma-international.org/article/automatic-test-sequence-generation-and-functional-coverage-measurement-from-uml-

sequence-diagrams/332865

Analyzing Growth Trends of Reusable Software Components
Kuljit Kaur (2013). Designing, Engineering, and Analyzing Reliable and Efficient Software (pp. 40-54).

www.irma-international.org/chapter/analyzing-growth-trends-reusable-software/74873

A Glossary of Business Sustainability Concepts
Arunasalam Sambhanthan (2022). Research Anthology on Agile Software, Software Development, and

Testing (pp. 67-83).

www.irma-international.org/chapter/a-glossary-of-business-sustainability-concepts/294459

Model-Driven Development of Multi-Core Embedded Software
Shang-Wei Lin, Chao-Sheng Lin, Chun-Hsien Lu, Yean-Ru Chenand Pao-Ann Hsiung (2011). Modern

Software Engineering Concepts and Practices: Advanced Approaches (pp. 357-379).

www.irma-international.org/chapter/model-driven-development-multi-core/51980

http://www.igi-global.com/chapter/domain-driven-reuse-software-design/49159
http://www.irma-international.org/article/atomicity-semantic-normalization/43607
http://www.irma-international.org/article/automatic-test-sequence-generation-and-functional-coverage-measurement-from-uml-sequence-diagrams/332865
http://www.irma-international.org/article/automatic-test-sequence-generation-and-functional-coverage-measurement-from-uml-sequence-diagrams/332865
http://www.irma-international.org/chapter/analyzing-growth-trends-reusable-software/74873
http://www.irma-international.org/chapter/a-glossary-of-business-sustainability-concepts/294459
http://www.irma-international.org/chapter/model-driven-development-multi-core/51980

