
275

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch013

Chapter 13

Model-Driven Impact Analysis 
of Software Product Lines

Hyun Cho
University of Alabama, USA

Jeff Gray
University of Alabama, USA

Yuanfang Cai
Drexel University, USA

Sonny Wong
Drexel University, USA

Tao Xie
North Carolina State University, USA

ABstrAct

Software assets, which are developed and maintained at various stages, have different abstraction lev-
els. The structural mismatch of the abstraction levels makes it difficult for developers to understand the 
consequences of changes. Furthermore, assessing change impact is even more challenging in software 
product lines because core assets are interrelated to support domain and application engineering. Model-
driven engineering helps software engineers in many ways by lifting the abstraction level of software 
development. The higher level of abstraction provided by models can serve as a backbone to analyze 
and design core assets and architectures for software product lines. This chapter introduces model-
driven impact analysis that is based on the synergy of three separate techniques: (1) domain-specific 
modeling, (2) constraint-based analysis, and (3) software testing. The techniques are used to establish 
traceability relations between software artifacts, assess the tradeoff of design alternatives quantitatively, 
and conduct change impact analysis.



276

Model-Driven Impact Analysis of Software Product Lines

introduction

Changes are inevitable in software development 
and maintenance. Software adaptation and evolu-
tion represent changes that occur throughout the 
software lifecycle from conception to termina-
tion, such that change management influences 
both cost and quality (Lehman & Belady, 1985). 
Thus, impact analysis, which identifies the ripple 
effects of proposed software changes, is beneficial 
before developers make actual modification to 
a software asset. However, it is challenging for 
developers to analyze multiple candidate options 
for changes and make decisions that may have 
significant consequences (Arnold & Bohner, 
1993; Bohner, 2002). Furthermore, it is difficult 
for developers to understand the consequences 
of changes across various software assets due 
to the structural mismatch of abstraction levels 
at different stages of the software lifecycle (De 
Lucia et al., 2008).

The challenges of software change are even 
more problematic for a software product line, 
which supports the derivation of a wide range of 
software products (members of a product family) 
through composing or modifying the core assets of 
its architecture. Developers can make changes to 
the problem domain and/or application domain of 
a software product line either to enhance the core 
architecture, impacting all the derived products, 
or to add more products as new members in the 
product family. Making changes to a software 
product requires the consideration of multiple 
constraints from different stakeholders and users 
of the product line family. It is possible that one 
stakeholder proposes a change to the requirements 
to maximize the value of his/her own product de-
rived from the product family, but the change may 
positively or negatively influence other products 
or other properties of the product family.

Impact analysis (Arnold & Bohner, 1993; 
Bohner, 2002) accepts as input a root asset to 
which an initial proposed change is made, and 
then performs three main steps: (1) The analysis 

traces the relationships between the root asset 
and other assets to identify related assets; (2) 
The analysis examines each related asset to 
determine if it will be affected by the proposed 
change, and if so, what changes must be made by 
developers to accommodate the initial proposed 
change; (3) The analysis adds the effort to make 
additional changes on related assets to the total 
needed effort, producing an estimated scope and 
cost of the proposed change as the results of the 
analysis. Analyzing the impact of changes before 
performing actual modification to an asset has been 
recognized as an important task in the software 
development lifecycle (Arnold & Bohner, 1993; 
Bohner, 2002; Jönsson, 2007; Anquetil et al., 
2008). The analysis results can serve as a prelimi-
nary input to planning project costs and predicting 
software system quality (Ajila, 1995). Despite its 
importance, the majority of support offered in 
current requirements and design tools provides 
only limited functionality. For example, given 
multiple alternatives to accommodate a change, 
quantitative and automated techniques are needed 
to assess the tradeoffs of each alternative, to bal-
ance the constraints from different perspectives, 
and to minimize the impact on existing products. 
Furthermore, it is difficult to assess change impact 
on heterogeneous software artifacts generated 
at different stages of the software development 
process. Manually creating traceability relations 
(the basis of impact analysis) is time-consuming, 
error-prone, and tedious. Although predicting 
change impact facilitates project planning and 
quality prediction, it is often omitted because of 
these preceding obstacles.

The Unified Modeling Language (UML) has 
been widely used for system analysis and design 
and a large number of UML diagrams have been 
developed to assist with lifecycle concerns. Some 
researchers have proposed impact analysis based 
on UML models to accomplish changes in the 
system while minimizing potential consequences, 
such as cost overrun and intermingled evolutions 
(Briand et el., 2006; Briand et el., 2002). However, 



 

 

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-impact-analysis-software/49163

Related Content

The Requirement Cube: A Requirement Template for Business, User, and Functional

Requirements With 5W1H Approach
Yasar Ugur Pabuccu, Ibrahim Yel, Ayse Berrak Helvaciogluand Büra Nur Asa (2022). International Journal

of Information System Modeling and Design (pp. 1-18).

www.irma-international.org/article/requirement-cube-requirement-template-business/297046

Using Executable Slicing to Improve Rogue Software Detection Algorithms
Jan Durand, Juan Flores, Travis Atkison, Nicholas Kraftand Randy Smith (2011). International Journal of

Secure Software Engineering (pp. 53-64).

www.irma-international.org/article/using-executable-slicing-improve-rogue/55269

Graph-Based Spam Image Detection for Mobile Phone Spam Image Filtering
So Yeon Kimand Kyung-Ah Sohn (2015). International Journal of Software Innovation (pp. 72-86).

www.irma-international.org/article/graph-based-spam-image-detection-for-mobile-phone-spam-image-filtering/133116

Non-Monotonic Modeling for Personalized Services Retrieval and Selection
Raymond Y. K. Lauand Wenping Zhang (2012). Theoretical and Analytical Service-Focused Systems

Design and Development (pp. 267-279).

www.irma-international.org/chapter/non-monotonic-modeling-personalized-services/66803

Fatigue Monitoring and Recognition During Basketball Sports via Physiological Signal Analysis
Zhenhua Xie (2022). International Journal of Information System Modeling and Design (pp. 1-11).

www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-

analysis/313581

http://www.igi-global.com/chapter/model-driven-impact-analysis-software/49163
http://www.irma-international.org/article/requirement-cube-requirement-template-business/297046
http://www.irma-international.org/article/using-executable-slicing-improve-rogue/55269
http://www.irma-international.org/article/graph-based-spam-image-detection-for-mobile-phone-spam-image-filtering/133116
http://www.irma-international.org/chapter/non-monotonic-modeling-personalized-services/66803
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581

