
334

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61692-874-2.ch015

Chapter 15

Reducing Enterprise Product
Line Architecture Deployment

and Testing Costs via
Model Driven Deployment,
Configuration, and Testing

Jules White
Virginia Tech, USA

Brian Dougherty
Vanderbilt University, USA

introduction

Emerging trends and challenges. Product-line
architectures (PLAs) enable the development of a

group of software packages that can be retargeted
for different requirement sets by leveraging com-
mon capabilities, patterns, and architectural styles
(Cements 2001). The design of a PLA is typically
guided by scope, commonality, and variability

ABstrAct

Product-line architectures (PLAs) are a paradigm for developing software families by customizing and
composing reusable artifacts, rather than handcrafting software from scratch. Extensive testing is re-
quired to develop reliable PLAs, which may have scores of valid variants that can be constructed from
the architecture’s components. It is crucial that each variant be tested thoroughly to assure the quality
of these applications on multiple platforms and hardware configurations. It is tedious and error-prone,
however, to setup numerous distributed test environments manually and ensure they are deployed and
configured correctly. To simplify and automate this process, the authors present a model-driven archi-
tecture (MDA) technique that can be used to (1) model a PLA’s configuration space, (2) automatically
derive configurations to test, and (3) automate the packaging, deployment, and testing of con-figurations.
To validate this MDA process, the authors use a distributed constraint optimization system case study to
quantify the cost savings of using an MDA approach for the deployment and testing of PLAs.

335

Reducing Enterprise Product Line Architecture Deployment and Testing Costs

(SCV) analysis (Coplien 1998). SCV captures
key characteristics of software product-lines,
including their (1) scope, which defines the do-
mains and context of the PLA, (2) commonalities,
which describe the attributes that recur across all
members of the family of products, and (3) vari-
abilities, which describe the attributes unique to
the different members of the family of products.

Although PLAs simplify the development of
new applications by reusing existing software
components, they require significant testing to
ensure that valid variants function properly. Not all
variants that obey the compositional rules of PLA
function properly, which motivates the need for
powerful testing methods and tools. For example,
connecting two components with compatible in-
terfaces can produce a non-functional variant due
to assumptions made by one component, such as
boundary conditions, that do not hold for the com-
ponent to which it is connected (Weyuker 1998).

The numerous points of variability in PLAs also
yield variant configuration spaces with hundreds,
thousands, or more possible variants. It is there-
fore crucial that PLAs undergo intelligent testing
of the variant configuration space to reduce the
number of configurations that must be tested. A
key challenge in performing intelligent testing of
the solution space is determining which variants
will yield the most valuable testing results, such
as performance data.

Solution approach → Model-driven testing
and domain analysis of product-line architec-
tures. Model-driven Architectures (MDA) (Karsai
2008, Brown 2008, Paige 2009) are a development
paradigm that employs models of critical system
functionality, model analysis, and code genera-
tion to reduce the cost of implementing complex
systems. MDA models capture design information,
such as software component response-time, that
are not present in third-generation programming
languages, such as Java and C++. Capturing these
critical design properties in a structured model
allows developers to perform analyses, such as

queuing analyses of a product-line architecture,
to catch design flaws early in the development
cycle when they are less costly to correct.

A further benefit of MDA is that code genera-
tors and model interpreters can be used to traverse
the model and automatically generate portions of
the implementation or automate repetitive tasks
(Trujillo 2007). For example, Unified Modeling
Language (UML) models of a system can be trans-
formed via code generation into class skeletons or
marshalling code to persist objects as XML. Model
interpreters can be used to automatically execute
tests of code using frameworks (Chen 2007), such
as Another Neat Tool (ANT) and JUnit.

MDA offers a potential solution to the chal-
lenges faced in testing large-scale PLAs. MDA
can be used to model the complex configuration
rules of a PLA, analyze the models to determine
effective test strategies, and then automate test
orchestration. Effectively leveraging MDA to
improve test planning and execution, however,
requires determining precisely what PLA design
properties to model, how to analyze the models,
and how best to leverage the results of these
analyses.

This chapter focuses on techniques and tools
for modeling, analyzing, and testing PLAs. First,
we introduce the reader to feature modeling (Kang
1990, Asikainen 2004, Kang 2002), which is a
widely used modeling methodology for capturing
PLA variability information. Second, we describe
approaches for annotating feature models with
probabilistic data obtained from application testing
that help predict potentially flawed configurations.
Next, we present numerical domain analysis
techniques that can be used to help guide the
production of PLA test plans. Finally, we present
the structure and functionality of a FireAnt, which
is an open-source Eclipse plug-in for modeling
PLAs, performing PLA domain analysis to derive
test plans, and automating and orchestrating PLA
testing for Java applications

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reducing-enterprise-product-line-

architecture/49165

Related Content

Integrating the Fragmented Pieces of IS Research Paradigms and Frameworks: A Systems

Approach
Manuel Mora, Ovsei Gelman, Guisseppi Forgionne, Doncho Petkovand Jeimy Cano (2010). Emerging

Systems Approaches in Information Technologies: Concepts, Theories, and Applications (pp. 182-203).

www.irma-international.org/chapter/integrating-fragmented-pieces-research-paradigms/38180

Factors Affecting the Adoption of Entertainment Mobile Applications in Iran: An Integrated

Framework
Sina Baghbaniyazdi, Amir Ekhlassiand Kamal Sakhdari (2018). Application Development and Design:

Concepts, Methodologies, Tools, and Applications (pp. 1552-1566).

www.irma-international.org/chapter/factors-affecting-the-adoption-of-entertainment-mobile-applications-in-iran/188269

Usability Software Engineering Testing Experimentation for Android-Based Web Applications:

Usability Engineering Testing for Online Learning Management System
Hina Saeeda, Fahim Arifand Nasir Mehmood Minhas (2018). Application Development and Design:

Concepts, Methodologies, Tools, and Applications (pp. 397-415).

www.irma-international.org/chapter/usability-software-engineering-testing-experimentation-for-android-based-web-

applications/188216

Extraction of an Architectural Model for Least Privilege Analysis
Bernard Spitz, Riccardo Scandariatoand Wouter Joosen (2012). International Journal of Secure Software

Engineering (pp. 27-44).

www.irma-international.org/article/extraction-architectural-model-least-privilege/74843

The Efficiency of Interactive Differential Evolution in Creation of Sound Contents: In Comparison

with Interactive Genetic Algorithm
Makoto Fukumoto, Ryota Yamamotoand Shintaro Ogawa (2013). International Journal of Software

Innovation (pp. 16-27).

www.irma-international.org/article/the-efficiency-of-interactive-differential-evolution-in-creation-of-sound-contents/89772

http://www.igi-global.com/chapter/reducing-enterprise-product-line-architecture/49165
http://www.igi-global.com/chapter/reducing-enterprise-product-line-architecture/49165
http://www.irma-international.org/chapter/integrating-fragmented-pieces-research-paradigms/38180
http://www.irma-international.org/chapter/factors-affecting-the-adoption-of-entertainment-mobile-applications-in-iran/188269
http://www.irma-international.org/chapter/usability-software-engineering-testing-experimentation-for-android-based-web-applications/188216
http://www.irma-international.org/chapter/usability-software-engineering-testing-experimentation-for-android-based-web-applications/188216
http://www.irma-international.org/article/extraction-architectural-model-least-privilege/74843
http://www.irma-international.org/article/the-efficiency-of-interactive-differential-evolution-in-creation-of-sound-contents/89772

