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ABSTRACT

Service-based tools are beginning to mature, but there is a cognitive gap between the understanding 
of what currently exists within an organization and how to use that knowledge in planning an overall 
enterprise modernization effort that realizes a service-oriented architecture. Traditional and contempo-
rary software engineering lifecycles use incremental approaches to extract business information from 
stakeholders in developing features and constraints in a future application. In traditional environments, 
this information is captured as requirements specifications, use cases, or storyboards. Here, we address 
the evolution of traditional software engineering approaches to support the conceptualization of abstract 
services that overlap multiple organizations. Traditional software engineering lifecycles must be enhanced 
with emerging processes related to the development applications for service-oriented environments. The 
chapter discusses state-of-the-art approaches that elicit information about the requirements for service-
oriented architectures. These approaches tend to leverage existing requirements engineering approaches 
to suggest aggregate service-based capabilities that might be most effective for a particular environment.
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INTRODUCTION: THE 
BACKGROUND OF SERVICE 
LIFECYCLES THAT SUPPORT NEW 
REQUIREMENTS ENGINEERING 
PRACTICES

Since the term software engineering was coined 
in the 1960s, one of the primary thrusts has been 
toward software modularity. A goal of software 
modularity is the development of packaged soft-
ware mechanisms that perform concise domain-
specific tasks. Such an application can be clearly 
understood by adjacent stakeholders and seam-
lessly integrated and consumed into new systems. 
A significant thrust towards software modularity 
was the introduction of object-oriented analysis 
and development. Object-oriented programming 
was first introduced in the early 1960’s as a part of 
the development of SIMULA 67 (Nygard, 1986). 
Interestingly enough, the impact of object-oriented 
systems was not fully realized until the mid 1980’s 
with the establishment and acceptance of method-
ologies introduced by Ivar Jacobsen, Grady Booch, 
and James Rumbaugh. This represented a gap of 
approximately 20 years before object-oriented 
programming experienced large-scale acceptance 
in application. Similarly, while component-based 
programming (i.e. a higher-level abstraction of 
object-oriented design) was introduced in late 
1960’s as a part of the NATO conference on the 
software crisis (Naur & Randell, 1969), it was not 
until the mid 1990’s that large-scale component 
–based applications became apparent.

The combination of components and the 
World-Wide Web has led to the emergence of 
Web services: components with URIs that can 
be invoked according to standard protocols. Web 
services underlie the general notion of a System 
of Systems where the underlying computations 
and interactions follow the principles of service-
oriented computing (Bichler & Lin, 2006)(Rao 
& Su, 2004). Unlike the above two approaches 
for building systems, service-oriented computing 
has experienced a relatively short horizon from 
conceptualization to application. While Gartner 
has been credited for the first mention of service-
oriented architecture in 1996 (SSA, 1996), just 
5 years later research labs, industrial organiza-
tions, and federal government facilities have all 
adopted a paradigm shift to create these types of 
architectures within their domains (see Figure 1).

Service-oriented architecture (SOA) is made 
possible by the existence of services both inside 
and outside of an enterprise. Within such an en-
vironment, independent tasks can be referred to 
as organizational capabilities. Web services pro-
vide the implementations of the capabilities and 
represent the building blocks. Properly-developed 
web services should execute well-defined tasks 
as supported by concise, openly accessible inter-
faces. As such, it is apparent that the first step in 
the development of any SOA is the acceptance of 
a service-based development approach (Blake, 
2007) and the population of an array of services 
that represent capabilities across a wide variety 
of domains.

Figure 1. The evolution of software modularity
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