
22

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

M. Brian Blake
University of Notre Dame, USA

Semi-Automated Lifecycles
for Eliciting Requirements for

Service-Oriented Environments

ABSTRACT

Service-based tools are beginning to mature, but there is a cognitive gap between the understanding
of what currently exists within an organization and how to use that knowledge in planning an overall
enterprise modernization effort that realizes a service-oriented architecture. Traditional and contempo-
rary software engineering lifecycles use incremental approaches to extract business information from
stakeholders in developing features and constraints in a future application. In traditional environments,
this information is captured as requirements specifications, use cases, or storyboards. Here, we address
the evolution of traditional software engineering approaches to support the conceptualization of abstract
services that overlap multiple organizations. Traditional software engineering lifecycles must be enhanced
with emerging processes related to the development applications for service-oriented environments. The
chapter discusses state-of-the-art approaches that elicit information about the requirements for service-
oriented architectures. These approaches tend to leverage existing requirements engineering approaches
to suggest aggregate service-based capabilities that might be most effective for a particular environment.

DOI: 10.4018/978-1-61350-159-7.ch002

23

Semi-Automated Lifecycles for Eliciting Requirements for Service-Oriented Environments

INTRODUCTION: THE
BACKGROUND OF SERVICE
LIFECYCLES THAT SUPPORT NEW
REQUIREMENTS ENGINEERING
PRACTICES

Since the term software engineering was coined
in the 1960s, one of the primary thrusts has been
toward software modularity. A goal of software
modularity is the development of packaged soft-
ware mechanisms that perform concise domain-
specific tasks. Such an application can be clearly
understood by adjacent stakeholders and seam-
lessly integrated and consumed into new systems.
A significant thrust towards software modularity
was the introduction of object-oriented analysis
and development. Object-oriented programming
was first introduced in the early 1960’s as a part of
the development of SIMULA 67 (Nygard, 1986).
Interestingly enough, the impact of object-oriented
systems was not fully realized until the mid 1980’s
with the establishment and acceptance of method-
ologies introduced by Ivar Jacobsen, Grady Booch,
and James Rumbaugh. This represented a gap of
approximately 20 years before object-oriented
programming experienced large-scale acceptance
in application. Similarly, while component-based
programming (i.e. a higher-level abstraction of
object-oriented design) was introduced in late
1960’s as a part of the NATO conference on the
software crisis (Naur & Randell, 1969), it was not
until the mid 1990’s that large-scale component
–based applications became apparent.

The combination of components and the
World-Wide Web has led to the emergence of
Web services: components with URIs that can
be invoked according to standard protocols. Web
services underlie the general notion of a System
of Systems where the underlying computations
and interactions follow the principles of service-
oriented computing (Bichler & Lin, 2006)(Rao
& Su, 2004). Unlike the above two approaches
for building systems, service-oriented computing
has experienced a relatively short horizon from
conceptualization to application. While Gartner
has been credited for the first mention of service-
oriented architecture in 1996 (SSA, 1996), just
5 years later research labs, industrial organiza-
tions, and federal government facilities have all
adopted a paradigm shift to create these types of
architectures within their domains (see Figure 1).

Service-oriented architecture (SOA) is made
possible by the existence of services both inside
and outside of an enterprise. Within such an en-
vironment, independent tasks can be referred to
as organizational capabilities. Web services pro-
vide the implementations of the capabilities and
represent the building blocks. Properly-developed
web services should execute well-defined tasks
as supported by concise, openly accessible inter-
faces. As such, it is apparent that the first step in
the development of any SOA is the acceptance of
a service-based development approach (Blake,
2007) and the population of an array of services
that represent capabilities across a wide variety
of domains.

Figure 1. The evolution of software modularity

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/semi-automated-lifecycles-eliciting-

requirements/60289

Related Content

Dependability Modeling
Paulo R. M. Maciel, Kishor S. Trivedi, Rivalino Matiasand Dong Seong Kim (2012). Performance and

Dependability in Service Computing: Concepts, Techniques and Research Directions (pp. 53-97).

www.irma-international.org/chapter/dependability-modeling/55513

Product-Service-Lifecycle: Methods and Functions for the Development and Management of

Product-Related Services
Kyrill Meyer, Michael Thiemeand Christian Zinke (2013). International Journal of Service Science,

Management, Engineering, and Technology (pp. 17-33).

www.irma-international.org/article/product-service-lifecycle/88101

Structural Analysis of Cloud Classifier
Anirban Kundu, Guanxiong Xuand Chunlin Ji (2014). International Journal of Cloud Applications and

Computing (pp. 63-75).

www.irma-international.org/article/structural-analysis-of-cloud-classifier/111149

Data Intensive Enterprise Applications
Peter Izsakand Aidan Shribman (2013). Data Intensive Storage Services for Cloud Environments (pp. 158-

165).

www.irma-international.org/chapter/data-intensive-enterprise-applications/77437

Security Issues in Cloud Computing
Kevin Curran, Sean Carlinand Mervyn Adams (2012). Cloud Computing for Teaching and Learning:

Strategies for Design and Implementation (pp. 200-208).

www.irma-international.org/chapter/security-issues-cloud-computing/65295

http://www.igi-global.com/chapter/semi-automated-lifecycles-eliciting-requirements/60289
http://www.igi-global.com/chapter/semi-automated-lifecycles-eliciting-requirements/60289
http://www.irma-international.org/chapter/dependability-modeling/55513
http://www.irma-international.org/article/product-service-lifecycle/88101
http://www.irma-international.org/article/structural-analysis-of-cloud-classifier/111149
http://www.irma-international.org/chapter/data-intensive-enterprise-applications/77437
http://www.irma-international.org/chapter/security-issues-cloud-computing/65295

