
201

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.2

DOI: 10.4018/978-1-61350-456-7.ch2.2

Yujian Fu
Alabama A & M University, USA

Zhijang Dong
Middle Tennessee State University, USA

Xudong He
Florida International University, USA

Architecture-Centered
Integrated Verification

ABSTRACT

This chapter presents an architecture-centered verification approach to large scale complex software
systems by integrating model checking with runtime verification. A software architecture design provides
a high-level abstraction of system topology, functionality, and/or behavior, which provides a basis for
system understanding and analysis as well as a foundation for subsequent detailed design and imple-
mentation. Therefore, software architecture plays a critical role in the software development process.
Reasoning and analysis of software architecture model can detect errors in an early stage, further reduce
the errors in the final product and highly improve the software quality. First identified are the two main
streams of software architecture research groups–the groups that work on the architectural abstrac-
tion and semantic foundation, and the group works on the framework using object oriented concepts.
Problematically, both architecture designs cannot generate correct products due to two reasons. On one
hand, not all properties can be verified at design level because of the state space explosion problem,
verification costs, and characteristics of open-system. On the other hand, a correct and valid software
architecture design does not ensure a correct implementation due to the error-prone characteristics of
the software development process.

202

Architecture-Centered Integrated Verification

INTRODUCTION

A software architecture (SA) design provides a
high-level abstraction of system topology, func-
tionality, and/or behavior ((Shaw, M. and Garlan,
D., 1996), (Perry, D. E. and Wolf, A. L.,1992),
(Taylor, R. N. et al., 2009)), which provides a basis
for system understanding and analysis as well as
a foundation for subsequent detailed design and
implementation. Therefore, software architecture
plays a critical role in the software development
process. In the past decade, tremendous research
((Luckham, D., et al., 1995), (Taylor, R. N., et al.,
1996), (Roshandel, R., et al.,2004),(Medvidovic,
N., et al., 1996,2002,200,2006),(He, X., et
al.,2002,2004),(Fu, Y., et al.,2007)) has been
done on software description languages and their
analysis.

There are two main research groups in the field
of software architectures: one group has focused
on the architectural abstraction, and semantic
analysis of architectures, while the other present
a framework adopting object oriented reuse con-
cepts for software architectures. The first group has
focused on architectural design abstractions called
styles and the semantics underpinning (Shaw, M.
and Garlan, D., 1996). Various formal architec-
ture description languages (ADLs) ((Luckham,
D., et al.,1995),(Allen, R. J., 1997), (Taylor, R.
N., et al., 1996),(Lu L., et al., 2002), (Vestal, S.,
1998)) and their supporting tools ((Medvidovic,
N., et al., 1996), (Vestal, S., 1998) have emerged
from this body of research over the decades (N.
Medvidovic & R.N. Taylor, 2000). To date, most
architectural tools have focused on the simulation
and analysis of architectural models to exploit the
semantic power of ADLs. However, the analysis

The approach aims at solving the above problems by including the analysis and verification of two
different levels of software development process–design level and implementation level-and bridg-
ing the gap between software architecture analysis and verification and the software product. In the
architecture design level, to make sure the design correctness and attack the large scale of complex
systems, the compositional verification is used by dividing and verifying each component individually
and synthesizing them based on the driving theory. Then for those properties that cannot be verified on
the design level, the design model is translated to implementation and runtime verification technique is
adapted to the program. This approach can highly reduce the work on the design verification and avoid
the state-explosion problem using model checking. Moreover, this approach can ensure both design
and implementation correctness, and can further provide a high confident final software product. This
approach is based on Software Architecture Model (SAM) that was proposed by Florida International
University in 1999. SAM is a formal specification and built on the pair of component-connector with
two formalisms – Petri nets and temporal logic. The ACV approach places strong demands on an or-
ganization to articulate those quality attributes of primary importance. It also requires a selection of
benchmark combination points with which to verify integrated properties. The purpose of the ACV is
not to commend particular architectures, but to provide a method for verification and analysis of large
scale software systems in architecture level. The future research works fall in two directions. In the
compositional verification of SAM model, it is possible that there is circular waiting of certain data
among different component and connectors. This problem was not discussed in the current work. The
translation of SAM to implementation is based on the restricted Petri nets due to the undecidable issue
of high level Petri nets. In the runtime analysis of implementation, extraction of the execution trace of
the program is still needed to get a white box view, and further analysis of execution can provide more
information of the product correctness.

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/architecture-centered-integrated-

verification/62443

Related Content

Web Usage Mining: Concept and Applications at a Glance
Vinod Kumarand R. S. Thakur (2018). Handbook of Research on Pattern Engineering System

Development for Big Data Analytics (pp. 216-229).

www.irma-international.org/chapter/web-usage-mining/202842

Tool-Support for Software Development Processes
Marco Kuhrmann, Georg Kalusand Gerhard Chroust (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 247-265).

www.irma-international.org/chapter/tool-support-software-development-processes/62446

The BioDynaMo Project: Experience Report
Roman Bauer, Lukas Breitwieser, Alberto Di Meglio, Leonard Johard, Marcus Kaiser, Marco Manca,

Manuel Mazzara, Fons Rademakers, Max Talanovand Alexander Dmitrievich Tchitchigin (2021). Research

Anthology on Recent Trends, Tools, and Implications of Computer Programming (pp. 1785-1791).

www.irma-international.org/chapter/the-biodynamo-project/261101

Requirements Engineering in the ICT4D Domain
Kristina Pitula, Daniel Sinnigand Thiruvengadam Radhakrishnan (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 187-200).

www.irma-international.org/chapter/requirements-engineering-ict4d-domain/62442

Intrusion Detection System Using Deep Learning
 Meeradevi, Pramod Chandrashekhar Sunagarand Anita Kanavalli (2022). Deep Learning Applications for

Cyber-Physical Systems (pp. 160-181).

www.irma-international.org/chapter/intrusion-detection-system-using-deep-learning/293129

http://www.igi-global.com/chapter/architecture-centered-integrated-verification/62443
http://www.igi-global.com/chapter/architecture-centered-integrated-verification/62443
http://www.irma-international.org/chapter/web-usage-mining/202842
http://www.irma-international.org/chapter/tool-support-software-development-processes/62446
http://www.irma-international.org/chapter/the-biodynamo-project/261101
http://www.irma-international.org/chapter/requirements-engineering-ict4d-domain/62442
http://www.irma-international.org/chapter/intrusion-detection-system-using-deep-learning/293129

