
992

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.14

Arjan Seesing
Enigmatry, The Netherlands

Hans-Gerhard Gross
Delft University of Technology, The Netherlands

Object Oriented Software
Testing with Genetic
Programming and
Program Analysis

ABSTRACT

Testing is a difficult and costly activity in the development of object-oriented programs. The challenge
is to come up with a sufficient set of test scenarios, out of the typically huge volume of possible test
cases, to demonstrate correct behavior and acceptable quality of the software. This can be reformulated
as a search problem to be solved by sophisticated heuristic search techniques such as evolutionary
algorithms. The goal is to find an optimal set of test cases to achieve a given test coverage criterion.
This chapter introduces and evaluates genetic programming as a heuristic search algorithm which is
suitable to evolve object-oriented test programs automatically to achieve high coverage of a class. It
outlines why the object paradigm is different to the procedural paradigm with respect to testing, and
why a genetic programming approach might be better suited than the genetic algorithms typically used
for testing procedural code. The evaluation of our implementation of a genetic programming approach,
augmented with program analysis techniques for better performance, indicates that object-oriented
software testing with genetic programming is feasible in principle. However, having many adjustable
parameters, evolutionary search heuristics have to be fined-tuned to the optimization problem at hand
for optimal performance, and, therefore, represent a difficult optimization problem in their own right.

DOI: 10.4018/978-1-61350-456-7.ch4.14

993

Object Oriented Software Testing with Genetic Programming and Program Analysis

INTRODUCTION

Testing is the most widely used and accepted tech-
nique for verification and validation of software
systems. It is applied to measure to which extent
a software system is conforming to its original
requirements specification and to demonstrate
its correct operation (IEEE, 1999). Testing is a
search problem that involves the identification
of a limited number of good tests out of a shear,
nearly unlimited number of possible test scenarios.
“Good tests” are those runtime scenarios that are
likely to uncover failures, or demonstrate correct-
ness of the system under test (SUT). Identifying
good test cases typically follows predefined
testing criteria, such as code coverage criteria
(Beizer, 1990). This is based on the assumption
that only the execution of a distinct feature, or its
coverage, can reveal failures that are associated
with this feature.

Because the primary activities of testing, test
case identification and design, are typical search
problems, they can be tackled by typical search
heuristics. One of the most important search heu-
ristics for software testing is known to be random
testing. This is also one of the most commonly
used testing strategies in industry today. Currently,
also more advanced heuristic search techniques
are applied to software testing. These are based
on evolutionary algorithms, and they have also
made their ways into industry (Baresel, 2003;
Buehler & Wegener, 2003) since their performance
in devising test cases was found to be at least as
good as random testing, but usually much better
(Gross, 2003; Tracey, Clarke & Mander, 1998).
The group of these testing techniques is referred to
as evolutionary testing (ET) according to Wegener
and Grochtmann (1998).

ET is an automatic test case generation
technique based on the application of evolution
strategies (Schwefel & Männer, 1990), genetic
algorithms (Goldberg, 1989; Holland, 1975),
genetic programming (Koza, 1992), or simulated
annealing (von Laarhoven & Aarts, 1987). ET

searches for optimal test parameter combinations
that satisfy a predefined test criterion. This test
criterion is represented through a “cost function”
that measures how well each of the automatically
generated optimization parameters satisfies the
given test criterion. For a test, various test criteria
a perceivable, according to the goal of the test,
such as how well a test case covers a piece of
code, in the case of structural testing (Jones et
al., 1996; Pargas et al, 1999), or how well a test
case violates a (safety) requirement (Tracey et al,
1999), for example.

Evolutionary testing has initially only been ap-
plied to traditional procedural software. Here, ET
is used to generate input parameter combinations
for test cases automatically that achieve, i.e., high
coverage, if the test target relates to some code
coverage criterion. However, also object-oriented
software testing with genetic algorithms has been
tackled by researchers, e.g., Gross and Mayer
(2002, 2003), Tonella (2004), and applying genetic
programming approaches, e.g., Seesing and Gross
(2006), Ribeiro, Zenha-Rela and de Vega (2008),
and Gupta and Rohil (2008).

The main differences of object technology
compared to the procedural paradigm are (1)
that it is inherently based on states which are not
readily visible outside of an object’s encapsulating
hull, and (2) that an object test, as the basic unit
of testing, can incorporate an arbitrary number of
operation invocations, or any arbitrary sequence
or combination of method invocations.

An object’s internal state depends on any pre-
viously performed operation invocations, the so
called invocation history (Gross, 2005; Gross &
Mayer, 2003), including input parameter settings.
Hence, object testing involves not only the genera-
tion of suitable input parameter combinations for
a single procedure under test, but, additionally, the
generation of suitable test invocation sequences of
various operations of an object, plus the generation
of their respective input parameter combinations.
As a consequence, in object testing, we have to
deal with a number of test artifacts, such as the

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/object-oriented-software-testing-genetic/62493

Related Content

Fuzzy Multi-Objective Programming With Joint Probability Distribution
 (2019). Multi-Objective Stochastic Programming in Fuzzy Environments (pp. 263-295).

www.irma-international.org/chapter/fuzzy-multi-objective-programming-with-joint-probability-distribution/223807

The Human Role in Model Synthesis
Steven Gibson (2018). Computer Systems and Software Engineering: Concepts, Methodologies, Tools,

and Applications (pp. 81-102).

www.irma-international.org/chapter/the-human-role-in-model-synthesis/192873

Teaching Software Engineering Through a Collaborative Game
Elizabeth Suescún Monsalve, Allan Ximenes Pereiraand Vera Maria B. Werneck (2018). Computer

Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications (pp. 874-895).

www.irma-international.org/chapter/teaching-software-engineering-through-a-collaborative-game/192905

Fusion of Fuzzy Multi-Criteria Decision Making Approaches for Discriminating Risk with Relate to

Software Project Performance: A Prospective Cohort Study
Arun Kumar Sangaiahand Vipul Jain (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 346-373).

www.irma-international.org/chapter/fusion-of-fuzzy-multi-criteria-decision-making-approaches-for-discriminating-risk-with-

relate-to-software-project-performance/261034

Keyword Search Mechanisms in Geo-Spatial Databases
 Priya M.and Kalpana R. (2018). Emerging Trends in Open Source Geographic Information Systems (pp.

176-194).

www.irma-international.org/chapter/keyword-search-mechanisms-in-geo-spatial-databases/205160

http://www.igi-global.com/chapter/object-oriented-software-testing-genetic/62493
http://www.irma-international.org/chapter/fuzzy-multi-objective-programming-with-joint-probability-distribution/223807
http://www.irma-international.org/chapter/the-human-role-in-model-synthesis/192873
http://www.irma-international.org/chapter/teaching-software-engineering-through-a-collaborative-game/192905
http://www.irma-international.org/chapter/fusion-of-fuzzy-multi-criteria-decision-making-approaches-for-discriminating-risk-with-relate-to-software-project-performance/261034
http://www.irma-international.org/chapter/fusion-of-fuzzy-multi-criteria-decision-making-approaches-for-discriminating-risk-with-relate-to-software-project-performance/261034
http://www.irma-international.org/chapter/keyword-search-mechanisms-in-geo-spatial-databases/205160

