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ABSTRACT

Testing is a difficult and costly activity in the development of object-oriented programs. The challenge 
is to come up with a sufficient set of test scenarios, out of the typically huge volume of possible test 
cases, to demonstrate correct behavior and acceptable quality of the software. This can be reformulated 
as a search problem to be solved by sophisticated heuristic search techniques such as evolutionary 
algorithms. The goal is to find an optimal set of test cases to achieve a given test coverage criterion. 
This chapter introduces and evaluates genetic programming as a heuristic search algorithm which is 
suitable to evolve object-oriented test programs automatically to achieve high coverage of a class. It 
outlines why the object paradigm is different to the procedural paradigm with respect to testing, and 
why a genetic programming approach might be better suited than the genetic algorithms typically used 
for testing procedural code. The evaluation of our implementation of a genetic programming approach, 
augmented with program analysis techniques for better performance, indicates that object-oriented 
software testing with genetic programming is feasible in principle. However, having many adjustable 
parameters, evolutionary search heuristics have to be fined-tuned to the optimization problem at hand 
for optimal performance, and, therefore, represent a difficult optimization problem in their own right.
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INTRODUCTION

Testing is the most widely used and accepted tech-
nique for verification and validation of software 
systems. It is applied to measure to which extent 
a software system is conforming to its original 
requirements specification and to demonstrate 
its correct operation (IEEE, 1999). Testing is a 
search problem that involves the identification 
of a limited number of good tests out of a shear, 
nearly unlimited number of possible test scenarios. 
“Good tests” are those runtime scenarios that are 
likely to uncover failures, or demonstrate correct-
ness of the system under test (SUT). Identifying 
good test cases typically follows predefined 
testing criteria, such as code coverage criteria 
(Beizer, 1990). This is based on the assumption 
that only the execution of a distinct feature, or its 
coverage, can reveal failures that are associated 
with this feature.

Because the primary activities of testing, test 
case identification and design, are typical search 
problems, they can be tackled by typical search 
heuristics. One of the most important search heu-
ristics for software testing is known to be random 
testing. This is also one of the most commonly 
used testing strategies in industry today. Currently, 
also more advanced heuristic search techniques 
are applied to software testing. These are based 
on evolutionary algorithms, and they have also 
made their ways into industry (Baresel, 2003; 
Buehler & Wegener, 2003) since their performance 
in devising test cases was found to be at least as 
good as random testing, but usually much better 
(Gross, 2003; Tracey, Clarke & Mander, 1998). 
The group of these testing techniques is referred to 
as evolutionary testing (ET) according to Wegener 
and Grochtmann (1998).

ET is an automatic test case generation 
technique based on the application of evolution 
strategies (Schwefel & Männer, 1990), genetic 
algorithms (Goldberg, 1989; Holland, 1975), 
genetic programming (Koza, 1992), or simulated 
annealing (von Laarhoven & Aarts, 1987). ET 

searches for optimal test parameter combinations 
that satisfy a predefined test criterion. This test 
criterion is represented through a “cost function” 
that measures how well each of the automatically 
generated optimization parameters satisfies the 
given test criterion. For a test, various test criteria 
a perceivable, according to the goal of the test, 
such as how well a test case covers a piece of 
code, in the case of structural testing (Jones et 
al., 1996; Pargas et al, 1999), or how well a test 
case violates a (safety) requirement (Tracey et al, 
1999), for example.

Evolutionary testing has initially only been ap-
plied to traditional procedural software. Here, ET 
is used to generate input parameter combinations 
for test cases automatically that achieve, i.e., high 
coverage, if the test target relates to some code 
coverage criterion. However, also object-oriented 
software testing with genetic algorithms has been 
tackled by researchers, e.g., Gross and Mayer 
(2002, 2003), Tonella (2004), and applying genetic 
programming approaches, e.g., Seesing and Gross 
(2006), Ribeiro, Zenha-Rela and de Vega (2008), 
and Gupta and Rohil (2008).

The main differences of object technology 
compared to the procedural paradigm are (1) 
that it is inherently based on states which are not 
readily visible outside of an object’s encapsulating 
hull, and (2) that an object test, as the basic unit 
of testing, can incorporate an arbitrary number of 
operation invocations, or any arbitrary sequence 
or combination of method invocations.

An object’s internal state depends on any pre-
viously performed operation invocations, the so 
called invocation history (Gross, 2005; Gross & 
Mayer, 2003), including input parameter settings. 
Hence, object testing involves not only the genera-
tion of suitable input parameter combinations for 
a single procedure under test, but, additionally, the 
generation of suitable test invocation sequences of 
various operations of an object, plus the generation 
of their respective input parameter combinations. 
As a consequence, in object testing, we have to 
deal with a number of test artifacts, such as the 
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