
1475

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.7

DOI: 10.4018/978-1-61350-456-7.ch6.7

Stuart Faulk
University of Oregon, USA

Michal Young
University of Oregon, USA

Teaching Globally Distributed
Software Development (DSD):

A Distributed Team Model

ABSTRACT

There is a growing demand for computer science graduates with the skills necessary to work effectively
in the global context. Experience suggests that the best way to learn the necessary socio-technical skills
is though participation in collaborative project courses where the student teams are actually globally
distributed. However, this pedagogical model has proven difficult to disseminate or sustain due to high
adoption costs and the difficulty in finding teaching partners.

This chapter describes an approach to building a collaborative teaching community that seeks to ad-
dress these problems. It begins by identifying the skills students should acquire in a Distributed Software
Development (DSD) course and discusses why firsthand experience with DSD problems is essential to
learning them. The chapter identifies the attributes that make DSD project courses difficult to develop or
teach, and then it describes a distributed team approach to developing a reusable infrastructure and a
teaching community to address those difficulties. Future work focuses on building an international com-
munity of educators and industry participants interested in partnering to develop and teach DSD courses.

1476

Teaching Globally Distributed Software Development (DSD)

INTRODUCTION

As the software industry increasingly deploys
globally distributed teams for software develop-
ment, there is commensurate demand for computer
science graduates with the skills necessary to work
effectively in the global context. This includes
not only the software engineering skills needed
to manage the technical problems of Distributed
Software Development (DSD), it also includes
the human skills required to address the issues of
managing or working in project teams that span
languages, cultures, and time zones.

While software development has become a
global enterprise, computer science education
remains largely parochial in course content and
student experience. Most students are introduced
to software development, project management,
and teamwork in software engineering project
courses where the teams are formed from their
classmates and development proceeds by face-
to-face interactions among peers. In contrast,
industrial experience shows that “distance mat-
ters” in the sense that geographic, temporal, and
cultural differences result in software engineering
coordination and control problems that differ both
qualitatively and quantitatively from those of co-
located developments. Where students work in
co-located teams, many of these problems simply
do not arise. Moreover, informal communication
tends to fill the gaps left by problems like unclear
requirements, ambiguous specification, or poor
planning. As a result, few students have the op-
portunity to encounter the kinds of problems that
arise in DSD or apply their skills to development
issues beyond programming.

A pedagogical model that promises to provide
a more globally relevant experience is one in
which student teams are actually geographically
distributed. A few universities have implemented
distributed software engineering project courses
with domestic partners or universities in other
countries. Under this model, development teams
are comprised of students from different schools

who must collaborate to complete a common
software project. Results of these efforts suggest
that, even for student projects, the need to col-
laborate at a distance introduces the same kinds
of communication and control issues endemic in
real distributed developments. Further, the lack
of informal communication channels requires
students to apply more formal methods in their
specification, design, and project planning.

While effective, this pedagogical model has
proven difficult to disseminate or sustain. The
adoption barrier is high relative to traditional
project courses. In addition to the usual pedagogi-
cal materials, distributed development requires
significant infrastructure to support student col-
laboration on projects, as well as faculty collabora-
tion on teaching and managing the course. There
are additional logistical issues in coordinating
term schedules and institutional administration.
Further, the collaborative teaching model requires
reliable and available teaching partners to ensure
the course can be institutionalized in the cur-
riculum. Currently, this depends on the whims
of individual instructors. The net result is that
industry’s need for students educated in distributed
software development is rapidly outpacing what
universities can provide.

We are currently engaged in a three-year,
NSF-funded effort focused on lowering barriers to
adoption and improving student access to project
courses teaching DSD skills. Our work suggests
that the difficulties of developing and teaching
collaborative DSD project courses can be over-
come using a community-based, distributed team
model. In this model, faculty from a community
of geographically distributed institutions work
together to develop a common set of pedagogi-
cal materials, then partner in twos or threes to
teach concurrent DSD project courses. The goal,
over time, is to create a growing community of
university, faculty, and industry participants who
contribute to the common set of pedagogical
materials, develop infrastructure, and provide

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/teaching-globally-distributed-software-

development/62524

Related Content

Assessing the Potential Improvement an Open Systems Development Perspective Could Offer

to the Software Evolution Paradigm
James Austin Cowlingand Wendy K. Ivins (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 1553-1573).

www.irma-international.org/chapter/assessing-the-potential-improvement-an-open-systems-development-perspective-

could-offer-to-the-software-evolution-paradigm/261090

Blockchain as a Disruptive Technology: Architecture, Business Scenarios, and Future Trends
Gopala Krishna Beharaand Tirumala Khandrika (2020). AI and Big Data’s Potential for Disruptive

Innovation (pp. 130-173).

www.irma-international.org/chapter/blockchain-as-a-disruptive-technology/236338

Providing Automated Holistic Process and Knowledge Assistance During Software

Modernization
Gregor Grambow, Roy Oberhauserand Manfred Reichert (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications (pp. 351-395).

www.irma-international.org/chapter/providing-automated-holistic-process-and-knowledge-assistance-during-software-

modernization/192885

Parallel Programming and Its Architectures Based on Data Access Separated Algorithm Kernels
Dake Liu, Joar Sohland Jian Wang (2012). Computer Engineering: Concepts, Methodologies, Tools and

Applications (pp. 278-296).

www.irma-international.org/chapter/parallel-programming-its-architectures-based/62448

Critical Aviation Information Systems: Identification and Protection
Sergiy Gnatyuk, Zhengbing Hu, Viktoriia Sydorenko, Marek Aleksander, Yuliia Polishchukand Khalicha

Ibragimovna Yubuzova (2019). Cases on Modern Computer Systems in Aviation (pp. 423-448).

www.irma-international.org/chapter/critical-aviation-information-systems/222199

http://www.igi-global.com/chapter/teaching-globally-distributed-software-development/62524
http://www.igi-global.com/chapter/teaching-globally-distributed-software-development/62524
http://www.irma-international.org/chapter/assessing-the-potential-improvement-an-open-systems-development-perspective-could-offer-to-the-software-evolution-paradigm/261090
http://www.irma-international.org/chapter/assessing-the-potential-improvement-an-open-systems-development-perspective-could-offer-to-the-software-evolution-paradigm/261090
http://www.irma-international.org/chapter/blockchain-as-a-disruptive-technology/236338
http://www.irma-international.org/chapter/providing-automated-holistic-process-and-knowledge-assistance-during-software-modernization/192885
http://www.irma-international.org/chapter/providing-automated-holistic-process-and-knowledge-assistance-during-software-modernization/192885
http://www.irma-international.org/chapter/parallel-programming-its-architectures-based/62448
http://www.irma-international.org/chapter/critical-aviation-information-systems/222199

