1799

Chapter 7.12

Various Extensions for the
Ambient OSGi Framework

Stéphane Frénot
University of Lyon, INRIA INSA-Lyon, F-69621, France

Frédéric Le Mouél
University of Lyon, INRIA INSA-Lyon, F-69621, France

Julien Ponge
University of Lyon, INRIA INSA-Lyon, F-69621, France

Guillaume Salagnac
University of Lyon, INRIA INSA-Lyon, F-69621, France

ABSTRACT

OSGi is a wrapper above the Java Virtual Machine that embraces two concepts: component approach
and service-oriented programming. The component approach enables a Java run-time to host several
concurrent applications, while the service-oriented programming paradigm allows the decomposition
of applications into independent units that are dynamically bound at runtime. Combining component
and service-oriented programming greatly simplifies the implementation of highly adaptive, constantly
evolving applications. This, in turn, is an ideal match to the requirements and constraints of ambient
intelligence computing, such as adaptation to changes associated with context evolution. OSGi par-
ticularly fits ambient requirements and constraints by absorbing and adapting to changes associated
with context evolution. However, OSGi needs to be finely tuned in order to integrate ambient specific
issues. This paper focuses on Zero-configuration architecture, Multi-provider framework, and Limited
resource requirements. The authors studied many OSGi improvements that should be taken into account
when building OSGi-based gateways. This paper summarizes the INRIA Amazones teamwork (http://
amazones.gforge.inria.fr/) on extending OSGi specifications and implementations to cope with ambient
concerns. This paper references three main concerns: management, isolation, and security.

DOI: 10.4018/978-1-61350-456-7.ch7.12

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



INTRODUCTION

Using OSGi technology in ambient environ-
ments requires focusing on specific problems
such footprint of the run-time framework, zero
configuration of the application and service
provisioning for multi-provider environments.
Because ambient intelligence is, and will remain,
based on hardware with limited resources, the size
and complexity of the framework have to be kept
under control. The kind of platform we address is
that of middle-sized devices, like smart phones,
set-top boxes or automotive embedded systems.
They have much more computing resources than
tiny embedded systems like micro-controllers,
but much less then commodity PCs or traditional
servers. We call these platforms gateway devices,
since most of the time they act as intermediaries
between a local network of services and the In-
ternet. As an illustration, the platforms we used in
our experimentations were ARM-based devices
as the LinkSys NSLU2 (266Mhz CPU, 32MB
RAM, 8MB Flash) or sheeva PC plugs (1.2Ghz
CPU, 521MB RAM, 512MB flash).

Devices forambient environment should work
in an autonomic way without any user interaction
apart from network and electrical connections
and hardware factory resets. They should address
many kinds of concurrent applications from many
providers. Each of them shall have its own running
space, where he is able to manage its own local
information and interact with local equipments.
This management model is similar to the Apple
and Android store model where the end-user has
the ability to choose its hosted applications, and
where each of them may have its own autonomy.
This implies a dynamic architecture where each
service provider may have an application life-
cycle that is neither bounded nor constrained
by the gateway system and hardware life-cycle.
Furthermore, various external constraints such as
costs and environmental issues distinguish gate-
way hardware from data-centers. The former has
resource constrains both in memory and processing

1800

Various Extensions for the Ambient OSGi Framework

power that are not compliant with full best-effort
developed applications.

Inthis article, we compiled most of our current
OSGi-related proposals in order to have a synthetic
view of the investigated extensions. The paper is
divided in three sections. First we summarize the
0OSGi framework and focuses on our specific con-
cerns. Next, we present each provided extension
as a walkthrough of our various publications. The
last section synthesizes our proposed extensions.

OSGi Context

OSGi (http://www.osgi.org/Main/HomePage) is
a container framework built on top of the Java
platform. Ithosts deploymentunits called bundles,
which contain Java resources such as compiled
classes, properties files or dynamically linked
native libraries. Each bundle features an Activa-
tor class, which is the entry point to be notified
when the bundle is started or stopped. A descrip-
tor, expressed as a regular Java manifest, details
meta-data such as the Activator qualified name,
or the various requirements the bundle expects,
such as the presence of another bundle exposing
a specific Java package.

The OSGi platform automatically checks de-
pendencies between bundles and controls the life-
cycle ofeach bundle. One key feature of the OSGi
framework is the seamless support of application
deployment: new applications can be installed, up-
dated and uninstalled at runtime withoutrequiring
arestart of the Java virtual machine itself, thanks
to classloaders native isolation. This streamlines
administration enables multiple hosted applica-
tions installed as independent deployment units.

Bundles are typically materialized as JAR
archives that can even be fetched by the OSGi
framework from a remote HTTP server. Each
bundle is associated with a dedicated Java class
loader that provides resource isolation with
respect to the other bundles. Unlike the local,
closed classloader hierarchies found in standard
Java applications, OSGi provides a dynamic



10 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/various-extensions-ambient-osgi-
framework/62545

Related Content

Grouping Concept in Optimum Sizing of Truss Structures: Optimization of Truss Structures
Gebrail Bekda, Sinan Melih Nigdeliand Osman Hurol Turkakn (2018). Handbook of Research on Predictive
Modeling and Optimization Methods in Science and Engineering (pp. 94-120).
www.irma-international.org/chapter/grouping-concept-in-optimum-sizing-of-truss-structures/206 746

Dynamic Body Bias: A Transistor-Level Technique for the Design of Low-Voltage CMOS Analog
Circuits
Vandana Niranjan (2023). Energy Systems Design for Low-Power Computing (pp. 44-66).

www.irma-international.org/chapter/dynamic-body-bias/319989

Attaining Semantic Enterprise Interoperability Through Ontology Architectural Patterns
Rishi Kanth Saripalleand Steven A. Demurjian (2018). Computer Systems and Software Engineering:
Concepts, Methodologies, Tools, and Applications (pp. 705-740).
www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-
patterns/192899

Improvement of RSM Prediction and Optimization by Using Box-Cox Transformation: Separation
of Colloidal Contaminants From Mineral Processing Effluents via Electrocoagulation

Mustafa Crak (2018). Handbook of Research on Predictive Modeling and Optimization Methods in Science
and Engineering (pp. 156-191).
www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-
transformation/206749

Optimizing Fault Tolerance for Multi-Processor System-on-Chip
Dimitar Nikolov, Mikael Vayrynen, Urban Ingelsson, Virendra Singhand Erik Larsson (2011). Design and
Test Technology for Dependable Systems-on-Chip (pp. 66-91).

www.irma-international.org/chapter/optimizing-fault-tolerance-multi-processor/51396



http://www.igi-global.com/chapter/various-extensions-ambient-osgi-framework/62545
http://www.igi-global.com/chapter/various-extensions-ambient-osgi-framework/62545
http://www.irma-international.org/chapter/grouping-concept-in-optimum-sizing-of-truss-structures/206746
http://www.irma-international.org/chapter/dynamic-body-bias/319989
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899
http://www.irma-international.org/chapter/attaining-semantic-enterprise-interoperability-through-ontology-architectural-patterns/192899
http://www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-transformation/206749
http://www.irma-international.org/chapter/improvement-of-rsm-prediction-and-optimization-by-using-box-cox-transformation/206749
http://www.irma-international.org/chapter/optimizing-fault-tolerance-multi-processor/51396

