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Chapter  8.13

HIGHER-LEVEL PARALLEL 
COMPUTING: IMPLICIT 
PARALLELISM

Higher level parallel programming models express 
parallelism in an implicit way. Instead of imposing 
programmers to create multiple tasks that can run 
concurrently and handle their communications and 
synchronizations explicitly, these models allow 

programs to be written without assumptions of 
artificial sequenciality. The programs are naturally 
parallel. Examples of such kind of models include 
the Chemical Reaction Models (CRMs) (Banatre 
& Le Metayer, 1990, 1993), Linda (Carriero & 
Gelernter, 1989), and Unity (Chandy & Misra, 
1988; Misra, 1989). These models are created to 
address higher level programming issues such 
as formal program specification, program syn-
thesis, program derivation and verification, and 
software architecture. Efficient implementation 
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ABSTRACT

Gamma Calculus is an inherently parallel, high-level programming model, which allows simple pro-
gramming molecules to interact, creating a complex system with minimum of coding. Gamma calculus 
modeled programs were written on top of IBM’s TSpaces middleware, which is Java-based and uses 
a “Tuple Space” based model for communication, similar to that in Gamma. A parser was written in 
C++ to translate the Gamma syntax. This was implemented on UHD’s grid cluster (grid.uhd.edu), and 
in an effort to increase performance and scalability, existing Gamma programs are being transferred to 
Nvidia’s CUDA architecture. General Purpose GPU computing is well suited to run Gamma programs, 
as GPU’s excel at running the same operation on a large data set, potentially offering a large speedup.
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of these models has limited success and therefore 
obscures its direct applications in software design 
(Creveui, 1991; Gladitz, 1996). Despite this limi-
tation, efforts have been made in both academic 
and industrial settings to avail these models in 
real-world programming. For example, Unity 
has been used in industrial software design and 
found successful; execution efficiency of Linda 
has been affirmed by experiments and it is imple-
mented by IBM Tuple Space. Recent discussions 
of these models in multi-agent system design have 
also been found in literature (Cabri, 2000). In the 
following discussion, we focus on the Chemical 
Reaction Models and its applications.

The Chemical Reaction Models describe 
computation as “chemical reactions”. Data (the 
“solution”) are represented as a multiset. A set of 
“reaction” rules is given to combine elements in 
the multiset and produce new elements. Reactions 
take place until the solution becomes inert, namely 
there are no more elements can be combined. The 
results of computation are represented as the inert 
multiset. Gamma is a kernel language in which 
programs are described in terms of multiset trans-
formations. In Gamma programming paradigm, 
programmers can concentrate on the logic of 
problem solving based on an abstract machine and 
are free from considering any particular execution 
environment. It has seeded follow-up elabora-
tions, such as Chemical Abstract Machine (Cham) 
(Berry & Boudol, 1992), higher-order Gamma (Le 
Metayer, 1994; Cohen & Muylaert-Filho, 1996), 
and Structured Gamma (Fradet & Le Metayer, 
1998). While the original Gamma language is a 
first-order language, higher order extensions have 
been proposed to enhance the expressiveness of 
the language. These include higher-order Gamma, 
hmm-calculus, and others. The recent formal-
isms, γ-Calculi, of Gamma languages combine 
reaction rules and the multisets of data and treat 
reactions as first-class citizens (Banâtre, Fradet, & 
Radenac, 2004, 2005a, 2005b). Among γ-Calculi, 
γ0-Calculus is a minimal basis for the chemical 
paradigm; γc-Calculus extends γ0-Calculus by 

adding a condition term into γ-abstractions; and 
γn-Calculus extends γ0-Calculus by allowing ab-
stractions to atomically capture multiple elements. 
Finally, γcn-Calculus combines both γc-Calculus 
and γn-Calculus. For notational simplicity, we use 
γ-Calculus to mean γcn-Calculus from this point on.

The paper will be organized as follows. In the 
second section, we give a brief introduction to 
γ-Calculus. In the third and the fourth section, we 
discuss the method for implementing γ-Calculus 
in IBM Tuple space and in OpenCL, respectively. 
Experimental results are presented thereafter. We 
conclude in the last section.

γ-CALCULUS

The basic term of a Gamma program is molecules 
(or γ-expressions), which can be simple data or 
programs (γ-abstractions). The execution of the 
Gamma program can be seen as the evolution 
of a solution of molecules, which react until the 
solution becomes inert. Molecules are recursively 
defined as constants, γ-abstractions, multisets 
or solution of molecules. The following is their 
syntax:

M::= 0 | 1 | … | ‘a’ | ‘b’ | … ; constants

| γP[C].M ; γ-abstraction

| M1, M2 ; multiset

| <M> ; solution

The multiset constructor “,” is associative and 
commutative (AC rule). Solutions encapsulate 
molecules. Molecules can move within solu-
tions but not across solutions. γ-abstractions are 
elements of multisets, just like other elements. 
They can be applied to other elements of the 
same solution if a match to pattern P is found 
and condition C evaluates to true and therefore 
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