
2016

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.13

HIGHER-LEVEL PARALLEL
COMPUTING: IMPLICIT
PARALLELISM

Higher level parallel programming models express
parallelism in an implicit way. Instead of imposing
programmers to create multiple tasks that can run
concurrently and handle their communications and
synchronizations explicitly, these models allow

programs to be written without assumptions of
artificial sequenciality. The programs are naturally
parallel. Examples of such kind of models include
the Chemical Reaction Models (CRMs) (Banatre
& Le Metayer, 1990, 1993), Linda (Carriero &
Gelernter, 1989), and Unity (Chandy & Misra,
1988; Misra, 1989). These models are created to
address higher level programming issues such
as formal program specification, program syn-
thesis, program derivation and verification, and
software architecture. Efficient implementation

Hong Lin
University of Houston-Downtown, USA

Jeremy Kemp
University of Houston-Downtown, USA

Padraic Gilbert
University of Houston-Downtown, USA

Computing Gamma Calculus
on Computer Cluster

ABSTRACT

Gamma Calculus is an inherently parallel, high-level programming model, which allows simple pro-
gramming molecules to interact, creating a complex system with minimum of coding. Gamma calculus
modeled programs were written on top of IBM’s TSpaces middleware, which is Java-based and uses
a “Tuple Space” based model for communication, similar to that in Gamma. A parser was written in
C++ to translate the Gamma syntax. This was implemented on UHD’s grid cluster (grid.uhd.edu), and
in an effort to increase performance and scalability, existing Gamma programs are being transferred to
Nvidia’s CUDA architecture. General Purpose GPU computing is well suited to run Gamma programs,
as GPU’s excel at running the same operation on a large data set, potentially offering a large speedup.

DOI: 10.4018/978-1-61350-456-7.ch8.13

2017

Computing Gamma Calculus on Computer Cluster

of these models has limited success and therefore
obscures its direct applications in software design
(Creveui, 1991; Gladitz, 1996). Despite this limi-
tation, efforts have been made in both academic
and industrial settings to avail these models in
real-world programming. For example, Unity
has been used in industrial software design and
found successful; execution efficiency of Linda
has been affirmed by experiments and it is imple-
mented by IBM Tuple Space. Recent discussions
of these models in multi-agent system design have
also been found in literature (Cabri, 2000). In the
following discussion, we focus on the Chemical
Reaction Models and its applications.

The Chemical Reaction Models describe
computation as “chemical reactions”. Data (the
“solution”) are represented as a multiset. A set of
“reaction” rules is given to combine elements in
the multiset and produce new elements. Reactions
take place until the solution becomes inert, namely
there are no more elements can be combined. The
results of computation are represented as the inert
multiset. Gamma is a kernel language in which
programs are described in terms of multiset trans-
formations. In Gamma programming paradigm,
programmers can concentrate on the logic of
problem solving based on an abstract machine and
are free from considering any particular execution
environment. It has seeded follow-up elabora-
tions, such as Chemical Abstract Machine (Cham)
(Berry & Boudol, 1992), higher-order Gamma (Le
Metayer, 1994; Cohen & Muylaert-Filho, 1996),
and Structured Gamma (Fradet & Le Metayer,
1998). While the original Gamma language is a
first-order language, higher order extensions have
been proposed to enhance the expressiveness of
the language. These include higher-order Gamma,
hmm-calculus, and others. The recent formal-
isms, γ-Calculi, of Gamma languages combine
reaction rules and the multisets of data and treat
reactions as first-class citizens (Banâtre, Fradet, &
Radenac, 2004, 2005a, 2005b). Among γ-Calculi,
γ0-Calculus is a minimal basis for the chemical
paradigm; γc-Calculus extends γ0-Calculus by

adding a condition term into γ-abstractions; and
γn-Calculus extends γ0-Calculus by allowing ab-
stractions to atomically capture multiple elements.
Finally, γcn-Calculus combines both γc-Calculus
and γn-Calculus. For notational simplicity, we use
γ-Calculus to mean γcn-Calculus from this point on.

The paper will be organized as follows. In the
second section, we give a brief introduction to
γ-Calculus. In the third and the fourth section, we
discuss the method for implementing γ-Calculus
in IBM Tuple space and in OpenCL, respectively.
Experimental results are presented thereafter. We
conclude in the last section.

γ-CALCULUS

The basic term of a Gamma program is molecules
(or γ-expressions), which can be simple data or
programs (γ-abstractions). The execution of the
Gamma program can be seen as the evolution
of a solution of molecules, which react until the
solution becomes inert. Molecules are recursively
defined as constants, γ-abstractions, multisets
or solution of molecules. The following is their
syntax:

M::= 0 | 1 | … | ‘a’ | ‘b’ | … ; constants

| γP[C].M ; γ-abstraction

| M1, M2 ; multiset

| <M> ; solution

The multiset constructor “,” is associative and
commutative (AC rule). Solutions encapsulate
molecules. Molecules can move within solu-
tions but not across solutions. γ-abstractions are
elements of multisets, just like other elements.
They can be applied to other elements of the
same solution if a match to pattern P is found
and condition C evaluates to true and therefore

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/computing-gamma-calculus-computer-

cluster/62559

Related Content

Blockchain as a Disruptive Technology: Architecture, Business Scenarios, and Future Trends
Gopala Krishna Beharaand Tirumala Khandrika (2020). AI and Big Data’s Potential for Disruptive

Innovation (pp. 130-173).

www.irma-international.org/chapter/blockchain-as-a-disruptive-technology/236338

Towards an Understanding of Collaborations in Agile Course Projects
Pankaj Kamthan (2018). Computer Systems and Software Engineering: Concepts, Methodologies, Tools,

and Applications (pp. 1180-1198).

www.irma-international.org/chapter/towards-an-understanding-of-collaborations-in-agile-course-projects/192919

Reverse Engineering and MDA: An Introduction
Liliana María Favre (2010). Model Driven Architecture for Reverse Engineering Technologies: Strategic

Directions and System Evolution (pp. 1-14).

www.irma-international.org/chapter/reverse-engineering-mda/49175

MUSTER: A Situational Tool for Requirements Elicitation
Chad Coulin, Didar Zowghiand Abd-El-Kader Sahraoui (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 620-638).

www.irma-international.org/chapter/muster-situational-tool-requirements-elicitation/62468

Network Availability for Distributed Applications
Luigia Petre, Kaisa Sereand Marina Waldén (2012). Dependability and Computer Engineering: Concepts

for Software-Intensive Systems (pp. 36-56).

www.irma-international.org/chapter/network-availability-distributed-applications/55323

http://www.igi-global.com/chapter/computing-gamma-calculus-computer-cluster/62559
http://www.igi-global.com/chapter/computing-gamma-calculus-computer-cluster/62559
http://www.irma-international.org/chapter/blockchain-as-a-disruptive-technology/236338
http://www.irma-international.org/chapter/towards-an-understanding-of-collaborations-in-agile-course-projects/192919
http://www.irma-international.org/chapter/reverse-engineering-mda/49175
http://www.irma-international.org/chapter/muster-situational-tool-requirements-elicitation/62468
http://www.irma-international.org/chapter/network-availability-distributed-applications/55323

